Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lenin Mahimainathan is active.

Publication


Featured researches published by Lenin Mahimainathan.


Journal of Biological Chemistry | 2002

Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription.

Nandini Ghosh-Choudhury; Sherry L. Abboud; Riko Nishimura; Anthony J. Celeste; Lenin Mahimainathan; Goutam Ghosh Choudhury

The mechanism by which bone morphogenetic protein-2 (BMP-2) induces osteoblast differentiation is not precisely known. We investigated the involvement of the phosphatidylinositol (PI) 3-kinase/Akt signal transduction pathway in modulation of this process. BMP-2 stimulated PI 3-kinase activity in osteogenic cells. Inhibition of PI 3-kinase activity with the specific inhibitor Ly-294002 prevented BMP-2-induced alkaline phosphatase, an early marker of osteoblast differentiation. Expression of dominant-negative PI 3-kinase also abolished osteoblastic induction of alkaline phosphatase in response to BMP-2, confirming the involvement of this lipid kinase in this process. BMP-2 stimulated Akt serine/threonine kinase activity in a PI 3-kinase-dependent manner in osteoblast precursor cells. Inhibition of Akt activity by a dominant-negative mutant of Akt blocked BMP-2-induced osteoblastic alkaline phosphatase activity. BMP-2 stimulates its own expression during osteoblast differentiation. Expression of dominant-negative PI 3-kinase or dominant-negative Akt inhibited BMP-2-induced BMP-2 transcription. Because all the known biological activities of BMP-2 are mediated by transcription via BMP-specific Smad proteins, we investigated the involvement of PI 3-kinase in Smad-dependent BMP-2 transcription. Smad5 stimulated BMP-2 transcription independent of addition of the ligand. Dominant-negative PI 3-kinase or dominant-negative Akt inhibited Smad5-dependent transcription of BMP-2. Furthermore dominant-negative Akt inhibited translocation of BMP-specific Smads into nucleus. Together these data provide the first evidence that activation of BMP receptor serine/threonine kinase stimulates the PI 3 kinase/Akt pathway and define a role for this signal transduction pathway in BMP-specific Smad function during osteoblast differentiation.


Journal of Biological Chemistry | 2006

Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-κB- and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin

Bysani Chandrasekar; Srinivas Mummidi; Lenin Mahimainathan; Devang N. Patel; Steven R. Bailey; Syed Z. Imam; Warner C. Greene; Anthony J. Valente

The proliferation and migration of arterial smooth muscle cells (SMCs) are key events in the vascular restenosis that frequently follows angioplasty. Furthermore, SMC migration and neointimal hyperplasia are promoted by degradation of the extracellular matrix by matrix metalloproteinases (MMPs). Because we demonstrated previously that the proinflammatory and proatherogenic cytokine interleukin-18 (IL-18) stimulates SMC proliferation (Chandrasekar, B., Mummidi, S., Valente, A. J., Patel, D. N., Bailey, S. R., Freeman, G. L., Hatano, M., Tokuhisa, T., and Jensen, L. E. (2005) J. Biol. Chem. 280, 26263–26277), we investigated whether IL-18 induces SMC migration in an MMP-dependent manner and whether the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin can inhibit this response. IL-18 treatment increased both mRNA and protein expression of MMP9 in human coronary artery SMCs. Gel shift, enzyme-linked immunosorbent, and chromatin immunoprecipitation assays revealed a strong induction of IL-18-mediated AP-1 (c-Fos, c-Jun, and Fra-1) and NF-κB (p50 and p65) activation and stimulation of MMP9 promoter-dependent reporter gene activity in an AP-1- and NF-κB-dependent manner. Ectopic expression of p65, c-Fos, c-Jun, and Fra-1 induced MMP9 promoter activity. Specific antisense or small interfering RNA reagents for these transcription factors reduced IL-18-mediated MMP9 transcription. Furthermore, IL-18 stimulated SMC migration in an MMP9-dependent manner. Atorvastatin effectively suppressed IL-18-mediated AP-1 and NF-κB activation, MMP9 expression, and SMC migration. Together, our results indicate for the first time that the proatherogenic cytokine IL-18 induces human coronary artery SMC migration in an MMP9-dependent manner. Atorvastatin inhibits IL-18-mediated aortic SMC migration and has therapeutic potential for attenuating the progression of atherosclerosis and restenosis.


Diabetes | 2006

Mesangial Cell Hypertrophy by High Glucose Is Mediated by Downregulation of the Tumor Suppressor PTEN

Lenin Mahimainathan; Falguni Das; Balachandar Venkatesan; Goutam Ghosh Choudhury

Diabetic nephropathy is characterized early in its course by glomerular hypertrophy and, importantly, mesangial hypertrophy, which correlate with eventual glomerulosclerosis. The mechanism of hypertrophy, however, is not known. Gene disruption of the tumor suppressor PTEN, a negative regulator of the phosphatidylinositol 3-kinase/Akt pathway, in fruit flies and mice demonstrated its role in size control in a cell-specific manner. Here, we investigated the mechanism of mesangial hypertrophy in response to high extracellular glucose. We link early renal hypertrophy with significant reduction in PTEN expression in the streptozotocin-induced diabetic kidney cortex and glomeruli, concomitant with activation of Akt. Similarly, exposure of mesangial cells to high concentrations of glucose also decreased PTEN expression and its phosphatase activity, resulting in increased Akt activity. Expression of PTEN inhibited high-glucose–induced mesangial cell hypertrophy, and expression of dominant-negative PTEN was sufficient to induce hypertrophy. In diabetic nephropathy, the hypertrophic effect of hyperglycemia is thought to be mediated by transforming growth factor-β (TGF-β). TGF-β significantly reduced PTEN expression in mesangial cells, with a reduction in its phosphatase activity and an increase in Akt activation. PTEN and dominant-negative Akt attenuated TGF-β–induced hypertrophy of mesangial cells. Finally, we show that inhibition of TGF-β signal transduction blocks the effect of high glucose on PTEN downregulation. These data identify a novel mechanism placing PTEN as a key regulator of diabetic mesangial hypertrophy involving TGF-β signaling.


PLOS ONE | 2012

Identification of Novel microRNAs in Post-Transcriptional Control of Nrf2 Expression and Redox Homeostasis in Neuronal, SH-SY5Y Cells

Madhusudhanan Narasimhan; Dhyanesh Patel; Dhanashree Vedpathak; Marylatha Rathinam; George I. Henderson; Lenin Mahimainathan

Nuclear factor-erythroid 2-related factor 2 (Nrf2/NFE2L2), a redox-sensitive transcription factor plays a critical role in adaptation to cellular stress and affords cellular defense by initiating transcription of antioxidative and detoxification genes. While a protein can be regulated at multiple levels, control of Nrf2 has been largely studied at post-translational regulation points by Keap1. Importantly, post-transcriptional/translational based regulation of Nrf2 is less understood and to date there are no reports on such mechanisms in neuronal systems. In this context, studies involving the role of microRNAs (miRs) which are normally considered as fine tuning regulators of protein production through translation repression and/or post-transcriptional alterations, are in place. In the current study, based on in-silico analysis followed by immunoblotting and real time analysis, we have identified and validated for the first time that human NFE2L2 could be targeted by miR153/miR27a/miR142-5p/miR144 in neuronal, SH-SY5Y cells. Co-transfection studies with individual miR mimics along with either WT 3′ UTR of human Nrf2 or mutated miRNA targeting seed sequence within Nrf2 3′ UTR, demonstrated that Nrf2 is a direct regulatory target of these miRs. In addition, ectopic expression of miR153/miR27a/miR142-5p/miR144 affected Nrf2 mRNA abundance and nucleo-cytoplasmic concentration of Nrf2 in a Keap1 independent manner resulting in inefficient transactivating ability of Nrf2. Furthermore, forced expression of miRs diminished GCLC and GSR expression resulting in alteration of Nrf2 dependent redox homeostasis. Finally, bioinformatics based miRNA-disease network analysis (MDN) along with extended computational network analysis of Nrf2 associated pathologic processes suggests that if in a particular cellular scenario where any of these miR153/miR27a/miR142-5p/miR144 either individually or as a group is altered, it could affect Nrf2 thus triggering and/or determining the fate of wide range of disease outcomes.


Journal of Cellular Physiology | 2007

Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells

Balachandar Venkatesan; Lenin Mahimainathan; Falguni Das; Nandini Ghosh-Choudhury; Goutam Ghosh Choudhury

Reactive oxygen species (ROS) contribute to many glomerular diseases by targeting mesangial cells. ROS have been shown to regulate expression of many antioxidant enzymes including catalase. The mechanism by which the expression of catalase protein is regulated by ROS is not precisely known. Here we report that increased intracellular ROS level by hydrogen peroxide (H2O2) reduced the expression of catalase. H2O2 increased phosphorylation of Akt kinase in a dose‐dependent and sustained manner with a concomitant increase in the phosphorylation of FoxO1 transcription factor. Further analysis revealed that H2O2 promoted rapid activation of phosphatidylinositol (PI) 3 kinase. The PI 3 kinase inhibitor Ly294002 and expression of tumor suppressor protein PTEN inhibited Akt kinase activity, resulting in the attenuation of FoxO1 phosphorylation and preventing the downregulating effect of H2O2 on catalase protein level. Dominant negative Akt attenuated the inhibitory effect of H2O2 on expression of catalase. Constitutively active FoxO1 increased the expression of catalase. However, dominant negative FoxO1 inhibited catalase protein level. Catalase transcription was reduced by H2O2 treatment. Furthermore, expression of dominant negative Akt and constitutively active FoxO1 increased catalase transcription, respectively. These results demonstrate that ROS downregulate the expression of catalase in mesangial cells by PI 3 kinase/Akt signaling via FoxO1 as a target. J. Cell. Physiol. 211: 457–467, 2007.


Journal of Neurochemistry | 2006

Astrocyte control of fetal cortical neuron glutathione homeostasis: up-regulation by ethanol.

Mary Latha Rathinam; Lora Talley Watts; Avishay A. Stark; Lenin Mahimainathan; Jennifer Stewart; Steven Schenker; George I. Henderson

Ethanol increases apoptotic neuron death in the developing brain and at least part of this may be mediated by oxidative stress. In cultured fetal rat cortical neurons, Ethanol increases levels of reactive oxygen species (ROS) within minutes of exposure and reduces total cellular glutathione (GSH) shortly thereafter. This is followed by onset of apoptotic cell death. These responses to Ethanol can be blocked by elevating neuron GSH with N‐acetylcysteine or by co‐culturing neurons with neonatal cortical astrocytes. We describe here mechanisms by which the astrocyte‐neuron γ‐glutamyl cycle is up‐regulated by Ethanol, enhancing control of neuron GSH in response to the pro‐oxidant, Ethanol. Up to 6 days of Ethanol exposure had no consistent effects on activities of γ‐glutamyl cysteine ligase or glutathione synthetase, and GSH content remained unchanged (p < 0.05). However, glutathione reductase was increased with 1 and 2 day Ethanol exposures, 25% and 39% for 2.5 and 4.0 mg/mL Ethanol by 1 day, and 11% and 16% for 2.5 and 4.0 mg/mL at 2 days, respectively (p < 0.05). A 24 h exposure to 4.0 mg/mL Ethanol increased GSH efflux from astrosoyte up to 517% (p < 0.05). Ethanol increased both γ‐glutamyl transpeptidase expression and activity on astrocyte within 24 h of exposure (40%, p = 0.05 with 4.0 mg/mL) and this continued for at least 4 days of Ethanol treatment. Aminopeptidase N activity on neurons increased by 62% and 55% within 1 h of Ethanol for 2.5 and 4.0 mg/mL concentration, respectively (p < 0.05), remaining elevated for 24 h of treatment. Thus, there are at least three key points of the γ‐glutamyl cycle that are up‐regulated by Ethanol, the net effect being to enhance neuron GSH homeostasis, thereby protecting neurons from Ethanol‐mediated oxidative stress and apoptotic death.


Journal of Cellular Physiology | 2008

Akt kinase targets association of CBP with SMAD 3 to regulate TGFβ-induced expression of plasminogen activator inhibitor-1

Falguni Das; Nandini Ghosh-Choudhury; Balachandar Venkatesan; Xiaonan Li; Lenin Mahimainathan; Goutam Ghosh Choudhury

Transforming growth factor‐β (TGFβ) controls expression of plasminogen activator inhibitor type 1 (PAI‐1), which regulates degradation of extracellular matrix proteins in fibrotic diseases. The TGFβ receptor‐specific Smad 3 has been implicated in the PAI‐1 expression. The mechanism by which non‐Smad signaling contributes to this process is not known. We studied the cross‐talk between Smad 3 and PI 3 kinase/Akt signaling in TGFβ‐induced PAI‐1 expression in renal mesangial cells. Inhibition of PI 3 kinase and Akt kinase blocked TGFβ‐ and Smad 3‐mediated expression of PAI‐1. In contrast, constitutively active PI 3 kinase and Akt kinase increased PAI‐1 expression, similar to TGFβ. Inhibition of PI 3 kinase and Akt kinase had no effect on TGFβ‐induced Smad 3 phosphorylation and its translocation to the nucleus. Notably, inhibition of PI 3 kinase‐dependent Akt kinase abrogated TGFβ‐induced PAI‐1 transcription, without affecting binding of Smad 3 to the PAI‐1 Smad binding DNA element. However, PI 3 kinase inhibition and dominant negative Akt kinase antagonized the association of the transcriptional coactivator CBP with Smad 3 in response to TGFβ, resulting in inhibition of Smad 3 acetylation. Together our findings identify TGFβ‐induced PI 3 kinase/Akt signaling as a critical regulator of Smad 3‐CBP interaction and Smad 3 acetylation, which cause increased PAI‐1 expression. J. Cell. Physiol. 214: 513–527, 2008.


Molecular Pharmacology | 2011

Overexpression of Nrf2 Protects Cerebral Cortical Neurons from Ethanol-Induced Apoptotic Death

Madhusudhanan Narasimhan; Lenin Mahimainathan; Mary Latha Rathinam; Amanjot Kaur Riar; George I. Henderson

Ethanol (ETOH) can cause apoptotic death of neurons by depleting GSH with an associated increase in oxidative stress. The current study illustrates a means to overcome this ETOH-induced neurotoxicity by enhancing GSH through boosting Nrf2, a transcription factor that controls GSH homeostasis. ETOH treatment caused a significant increase in Nrf2 protein, transcript expression, Nrf2-DNA binding activity, and expression of its transcriptional target, NQO1, in primary cortical neuron (PCNs). However, this increase in Nrf2 did not maintain GSH levels in response to ETOH, and apoptotic death still occurred. To elucidate this phenomenon, we silenced Nrf2 in neurons and found that ETOH-induced GSH depletion and the increase in superoxide levels were exacerbated. Furthermore, Nrf2 knockdown resulted in significantly increased (P < 0.05) caspase 3 activity and apoptosis. Adenovirus-mediated overexpression of Nrf2 prevented ETOH-induced depletion of GSH from the medium and high GSH subpopulations and prevented ETOH-related apoptotic death. These studies illustrate the importance of Nrf2-dependent maintenance of GSH homeostasis in cerebral cortical neurons in the defense against oxidative stress and apoptotic death elicited by ETOH exposure.


Molecular and Cellular Neuroscience | 2008

Role of Astrocytes and Chemokine Systems in Acute TNFα induced Demyelinating Syndrome: CCR2-dependent Signals promote Astrocyte Activation and Survival via NF-κB and Akt

Marlon P. Quinones; Yogeshwar Kalkonde; Carlos A. Estrada; Fabio Jimenez; Robert Ramirez; Lenin Mahimainathan; Srinivas Mummidi; Goutam Ghosh Choudhury; Hernan Martinez; Lisa M. Adams; Matthias Mack; Robert L. Reddick; Shivani Kaushal Maffi; Sylva Haralambous; Lesley Probert; Sunil K. Ahuja; Seema S. Ahuja

Chemotactic factors known as chemokines play an important role in the pathogenesis of multiple sclerosis (MS). Transgenic expression of TNFalpha in the central nervous system (CNS) leads to the development of a demyelinating phenotype (TNFalpha-induced demyelination; TID) that is highly reminiscent of MS. Little is known about the role of chemokines in TID but insights derived from studying this model might extend our current understanding of MS pathogenesis and complement data derived from the classic autoimmune encephalomyelitis (EAE) model system. Here we show that in TID, chemokines and their receptors were significantly increased during the acute phases of disease. Notably, the CCL2 (MCP-1)-CCR2 axis and the closely related ligand-receptor pair CCR1-CCL3 (MIP-1alpha) were among the most up-regulated during disease. On the other hand, receptors like CCR3 and CCR4 were not elevated. This significant increase in the levels of chemokines/receptors correlated with robust immune infiltration of the CNS by inflammatory cells, i.e., macrophages, and immune cells particularly T and B cells. Immunostaining and confocal microscopy, along with in vitro studies revealed that astrocytes were a major source of locally produced chemokines and expressed functional chemokine receptors such as CCR2. Using an in vitro system we demonstrate that expression of CCR2 was functional in astrocytes and that signaling via this receptor lead to activation of NF-kB and Akt and was associated with increased astrocyte survival. Collectively, our data suggests that transgenic murine models of MS are useful to dissect mechanisms of disease and that in these models, up-regulation of chemokines and their receptors may be key determinants in TID.


The FASEB Journal | 2008

Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B.

Balachandar Venkatesan; Nandini Ghosh-Choudhury; Falguni Das; Lenin Mahimainathan; Amrita Kamat; Balakuntalam S. Kasinath; Hanna E. Abboud; Goutam Ghosh Choudhury

Mesangioproliferative glomerulonephritis is associated with overactive PDGF receptor signal transduction. We show that the phytoalexin resveratrol dose dependently inhibits PDGF‐induced DNA synthesis in mesangial cells with an IC50 of 10 µM without inducing apoptosis. Remarkably, the increased SIRT1 deacetylase activity induced by resveratrol was not necessary for this inhibitory effect. Resveratrol significantly blocked PDGF‐stimulated c‐Src and Akt kinase activation, resulting in reduced cyclin D1 expression and attenuated pRb phosphorylation and cyclin‐dependent kinase‐2 (CDK2) activity. Furthermore, resveratrol inhibited PDGFR phosphorylation at the PI 3 kinase and Grb‐2 binding sites tyrosine‐751 and tyrosine‐716, respectively. This deficiency in PDGFR phosphorylation resulted in significant inhibition of PI 3 kinase and Erk1/2 MAPK activity. Interestingly, resveratrol increased the activity of protein tyrosine phosphatase PTP1B, which dephosphorylates PDGF‐stimulated phosphorylation at tyrosine‐751 and tyrosine‐716 on PDGFR with concomitant reduction in Akt and Erk1/2 kinase activity. PTP1B significantly inhibited PDGF‐induced DNA synthesis without inducing apoptosis. These results for the first time provide evidence that the stilbene resveratrol targets PTP1B to inhibit PDGFR mitogenic signaling.—Venkatesan, B., Ghosh‐Choudhury, N., Das, F., Mahimainathan, L., Kamat, A., Kasinath, B. S., Abboud, H. E., Choudhury, G. G. Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B. FASEB J. 22, 3469–3482 (2008)

Collaboration


Dive into the Lenin Mahimainathan's collaboration.

Top Co-Authors

Avatar

Goutam Ghosh Choudhury

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Nandini Ghosh-Choudhury

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

George I. Henderson

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Madhusudhanan Narasimhan

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Balachandar Venkatesan

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Falguni Das

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Amanjot Kaur Riar

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Balakuntalam S. Kasinath

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Hanna E. Abboud

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Mary Latha Rathinam

Texas Tech University Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge