Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gözde Kiliç is active.

Publication


Featured researches published by Gözde Kiliç.


Environment International | 2013

Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles.

Vanessa Valdiglesias; Carla Costa; Gözde Kiliç; Solange Costa; Eduardo Pásaro; Blanca Laffon; João Paulo Teixeira

Zinc oxide nanoparticles (ZnO NPs) are one of the most abundantly used nanomaterials in consumer products and biomedical applications. As a result, human exposure to these NPs is highly frequent and they have become an issue of concern to public health. Although toxicity of ZnO NPs has been extensively studied and they have been shown to affect many different cell types and animal systems, there is a significant lack of toxicological data for ZnO NPs on the nervous system, especially for human neuronal cells and tissues. In this study, the cytotoxic and genotoxic effects of ZnO NPs on human SHSY5Y neuronal cells were investigated under different exposure conditions. Results obtained by flow cytometry showed that ZnO NPs do not enter the neuronal cells, but their presence in the medium induced cytotoxicity, including viability decrease, apoptosis and cell cycle alterations, and genotoxicity, including micronuclei production, H2AX phosphorylation and DNA damage, both primary and oxidative, on human neuronal cells in a dose- and time-dependent manner. Free Zn(2+) ions released from the ZnO NPs were not responsible for the viability decrease, but their role on other types of cell damage cannot be ruled out. The results obtained in this work contribute to increase the knowledge on the genotoxic and cytotoxic potential of ZnO NPs in general, and specifically on human neuronal cells, but further investigations are required to understand the action mechanism underlying the cytotoxic and genotoxic effects observed.


Food and Chemical Toxicology | 2013

Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells

Vanessa Valdiglesias; Carla Costa; V. P. Sharma; Gözde Kiliç; Eduardo Pásaro; João Paulo Teixeira; Alok Dhawan; Blanca Laffon

Titanium dioxide (TiO2) are among most frequently used nanoparticles (NPs). They are present in a variety of consumer products, including food industry in which they are employed as an additive. The potential toxic effects of these NPs on mammal cells have been extensively studied. However, studies regarding neurotoxicity and specific effects on neuronal systems are very scarce and, to our knowledge, no studies on human neuronal cells have been reported so far. Therefore, the main objective of this work was to investigate the effects of two types of TiO₂ NPs, with different crystalline structure, on human SHSY5Y neuronal cells. After NPs characterization, a battery of assays was performed to evaluate the viability, cytotoxicity, genotoxicity and oxidative damage in TiO₂ NP-exposed SHSY5Y cells. Results obtained showed that the behaviour of both types of NPs resulted quite comparable. They did not reduce the viability of neuronal cells but were effectively internalized by the cells and induced dose-dependent cell cycle alterations, apoptosis by intrinsic pathway, and genotoxicity not related with double strand break production. Furthermore, all these effects were not associated with oxidative damage production and, consequently, further investigations on the specific mechanisms underlying the effects observed in this study are required.


Environmental and Molecular Mutagenesis | 2015

Effects of iron oxide nanoparticles: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity

Vanessa Valdiglesias; Gözde Kiliç; Carla Costa; Natalia Fernández-Bertólez; Eduardo Pásaro; João Paulo Teixeira; Blanca Laffon

Iron oxide nanoparticles (ION) with superparamagnetic properties hold great promise for use in various biomedical applications; specific examples include use as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Increasing potential applications raise concerns over their potential effects on human health. Nevertheless, very little is currently known about the toxicity associated with exposure to these nanoparticles at different levels of biological organization. This article provides an overview of recent studies evaluating ION cytotoxicity, genotoxicity, developmental toxicity and neurotoxicity. Although the results of these studies are sometimes controversial, they generally indicate that surface coatings and particle size seem to be crucial for the observed ION‐induced effects, as they are critical determinants of cellular responses and intensity of effects, and influence potential mechanisms of toxicity. The studies also suggest that some ION are safe for certain biomedical applications, while other uses need to be considered more carefully. Overall, the available studies provide insufficient evidence to fully assess the potential risks for human health related to ION exposure. Additional research in this area is required including studies on potential long‐term effects. Environ. Mol. Mutagen. 56:125–148, 2015.


Journal of Trace Elements in Medicine and Biology | 2016

Are iron oxide nanoparticles safe? Current knowledge and future perspectives.

Vanessa Valdiglesias; Natalia Fernández-Bertólez; Gözde Kiliç; Carla Costa; Solange Costa; Sónia Fraga; Maria João Bessa; Eduardo Pásaro; João Paulo Teixeira; Blanca Laffon

Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure.


Journal of Applied Toxicology | 2016

In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests

Carla Costa; Fátima Brandão; Maria João Bessa; Solange Costa; Vanessa Valdiglesias; Gözde Kiliç; Natalia Fernández-Bertólez; Pedro Quaresma; Eulália Pereira; Eduardo Pásaro; Blanca Laffon; João Paulo Teixeira

Superparamagnetic iron oxide nanoparticles (ION) have attracted great interest for use in several biomedical fields. In general, they are considered biocompatible, but little is known of their effects on the human nervous system. The main objective of this work was to evaluate the cytotoxicity of two ION (magnetite), coated with silica and oleic acid, previously determining the possible interference of the ION with the methodological procedures to assure the reliability of the results obtained. Human neuroblastoma SHSY5Y and glioblastoma A172 cells were exposed to different concentrations of ION (5–300 µg ml–1), prepared in complete and serum‐free cell culture medium for three exposure times (3, 6 and 24 h). Cytotoxicity was evaluated by means of the MTT, neutral red uptake and alamar blue assays. Characterization of the main physical–chemical properties of the ION tested was also performed. Results demonstrated that both ION could significantly alter absorbance readings. To reduce these interferences, protocols were modified by introducing additional washing steps and cell‐free systems. Significant decreases in cell viability were observed for both cell lines in specific conditions by all assays. In general, oleic acid‐coated ION were less cytotoxic than silica‐coated ION; besides, a serum‐protective effect was observed for both ION studied and cell lines. These results contribute to increase the knowledge of the potential harmful effects of ION on the human nervous system. Understanding these effects is essential to establish satisfactory regulatory policies on the safe use of magnetite nanoparticles in biomedical applications. Copyright


Nanotoxicology | 2017

Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential

Kunal Bhattacharya; Gözde Kiliç; Pedro M. Costa; Bengt Fadeel

Abstract Engineered nanomaterials (ENMs) are being produced for an increasing number of applications. Therefore, it is important to assess and categorize ENMs on the basis of their hazard potential. The immune system is the foremost defence against foreign bodies. Here we performed cytokine profiling of a panel of nineteen representative ENMs procured from the Joint Research Centre (JRC) and commercial sources. Physicochemical characterization was performed using dynamic light scattering. The ENMs were all shown to be endotoxin content free. The human macrophage-differentiated THP.1 cell line was employed for cytotoxicity screening and based on the calculated IC50 values, the multi-walled carbon nanotubes (MWCNTs), ZnO, Ag and SiO2 NMs were found to be the most cytotoxic while single-walled carbon nanotubes (SWCNTs), TiO2, BaSO4 and CeO2 NMs, as well as the nanocellulose materials, were non-cytotoxic (at doses up to 100 µg/mL). Multiplex profiling of cytokine and chemokine secretion indicated that the TiO2, SiO2, BaSO4, CeO2 and nanocellulose materials induced potent inflammatory responses at sub-cytotoxic doses. Hierarchical clustering of cytokine responses coupled with pathway analysis demonstrated that the panel of ENMs could be segregated into two distinct groups characterized by activation and deactivation, respectively, of PPAR (peroxisome proliferator-activated receptor)/LXR (liver X receptor/retinoid X receptor) nuclear receptor pathways (NRPs). Furthermore, using rosiglitazone, a selective PPAR-γ agonist, we could show that PPAR-γ played an important role in the activation of inflammatory responses in cells exposed to TiO2 and SiO2 NMs. These studies show that ENMs of diverse chemical compositions can be grouped according to their inflammatory potential.


Journal of Toxicology and Environmental Health | 2012

In Vivo Genotoxicity Assessment in Rats Exposed to Prestige-Like Oil by Inhalation

Vanessa Valdiglesias; Gözde Kiliç; Carla Costa; Óscar Amor-Carro; Luis Mariñas-Pardo; David Ramos-Barbón; Josefina Méndez; Eduardo Pásaro; Blanca Laffon

One of the largest oil spill disasters in recent times was the accident of the oil tanker Prestige in front of the Galician coast in 2002. Thousands of people participated in the cleanup of the contaminated areas, being exposed to a complex mixture of toxic substances. Acute and prolonged respiratory symptoms and genotoxic effects were reported, although environmental exposure measurements were restricted to current determinations, such that attribution of effects observed to oil exposure is difficult to establish. The aim of this study was to analyze peripheral blood leukocytes (PBL) harvested from a rat model of subchronic exposure to a fuel oil with similar characteristics to that spilled by the Prestige tanker, in order to determine potential genotoxic effects under strictly controlled, in vivo exposure. Wistar Han and Brown Norway rats were exposed to the oil for 3 wk, and micronucleus test (MN) and comet assay, standard and modified with 8-oxoguanine DNA glycosylase (OGG1) enzyme, were employed to assess genotoxicity 72 h and 15 d after the last exposure. In addition, the potential effects of oil exposure on DNA repair capacity were determined by means of mutagen sensitivity assay. Results obtained from this study showed that inhalation oil exposure induced DNA damage in both Brown Norway and Wistar Han rats, especially in those animals evaluated 15 d after exposure. Although alterations in the DNA repair responses were noted, the sensitivity to oil substances varied depending on rat strain. Data support previous positive genotoxicity results reported in humans exposed to Prestige oil during cleanup tasks.


Toxicology | 2018

Neurotoxicity assessment of oleic acid-coated iron oxide nanoparticles in SH-SY5Y cells

Natalia Fernández-Bertólez; Carla Costa; Fátima Brandão; Gözde Kiliç; João Paulo Teixeira; Eduardo Pásaro; Blanca Laffon; Vanessa Valdiglesias

Iron oxide nanoparticles (ION) awaken a particular interest for biomedical applications due to their unique physicochemical properties, especially superparamagnetism, and ability to cross the blood-brain barrier. ION surface can be coated to improve their properties and facilitate functionalization. Still, coating may affect toxicity. The aim of this work was to evaluate the possible effects of oleic acid-coated ION (O-ION) on human neuronal cells (SH-SY5Y). A set of assays was conducted in complete and serum-free culture media for 3 and 24 h to assess O-ION cytotoxic effects - cell membrane disruption, cell cycle alteration and cell death induction -, and genotoxic effects - primary DNA damage, H2AX phosphorylation and micronuclei induction -, considering also DNA repair competence and iron ion release. Results obtained show that O-ION exhibit a moderate cytotoxicity related to cell membrane impairment, cell cycle disruption and cell death induction, especially notable in serum-free medium. Iron ion release was only observed in complete medium, indicating that cytotoxicity observed was not related to the presence of ions in the medium. However, O-ION genotoxic effects were limited to the induction of primary DNA damage, not related to double strand breaks, and this damage did not become fixed in cells in most conditions. Alterations in repair ability (DNA repair competence assay) were observed when cells where treated with O-ION before or during the challenge with H2O2, but not during the repair period. Further investigation is needed to clarify the possible role of oxidative stress and protein corona on observed O-ION toxicity.


Food and Chemical Toxicology | 2018

Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes

Natalia Fernández-Bertólez; Carla Costa; Fátima Brandão; Gözde Kiliç; José Alberto Duarte; João Paulo Teixeira; Eduardo Pásaro; Vanessa Valdiglesias; Blanca Laffon

Iron oxide nanoparticles (ION) have great potential for an increasing number of medical and biological applications, particularly those focused on nervous system. Although ION seem to be biocompatible and present low toxicity, it is imperative to unveil the potential risk for the nervous system associated to their exposure, especially because current data on ION effects on human nervous cells are scarce. Thus, in the present study potential toxicity associated with silica-coated ION (S-ION) exposure was evaluated on human A172 glioblastoma cells. To this aim, a complete toxicological screening testing several exposure times (3 and 24 h), nanoparticle concentrations (5-100 μg/ml), and culture media (complete and serum-free) was performed to firstly assess S-ION effects at different levels, including cytotoxicity - lactate dehydrogenase assay, analysis of cell cycle and cell death production - and genotoxicity - H2AX phosphorylation assessment, comet assay, micronucleus test and DNA repair competence assay. Results obtained showed that S-ION exhibit certain cytotoxicity, especially in serum-free medium, related to cell cycle disruption and cell death induction. However, scarce genotoxic effects and no alteration of the DNA repair process were observed. Results obtained in this work contribute to increase the knowledge on the impact of ION on the human nervous system cells.


Toxicology Research | 2016

Erratum: In vitro toxicity evaluation of silica-coated iron oxide nanoparticles in human SHSY5Y neuronal cells (Toxicology Research (2016) 5 (235-247))

Gözde Kiliç; Carla Costa; Natalia Fernández-Bertólez; Eduardo Pásaro; João Paulo Teixeira; Blanca Laffon; Vanessa Valdiglesias

Correction for ‘In vitro toxicity evaluation of silica-coated iron oxide nanoparticles in human SHSY5Y neuronal cells’ by Gözde Kiliç et al., Toxicol. Res., 2016, 5, 235–247.

Collaboration


Dive into the Gözde Kiliç's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Costa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge