Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grace J. Gang is active.

Publication


Featured researches published by Grace J. Gang.


Medical Physics | 2014

Cascaded systems analysis of photon counting detectors

Jingyan Xu; Wojciech Zbijewski; Grace J. Gang; J. W. Stayman; Katsuyuki Taguchi; Mats Lundqvist; Erik Fredenberg; John A. Carrino; Jeffrey H. Siewerdsen

PURPOSE Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). METHODS A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. RESULTS The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of 0.50) by ∼30% with corresponding improvement in DQE. The range in exposure and additive noise for which PCDs yield intrinsically higher DQE was quantified, showing performance advantages under conditions of very low-dose, high additive noise, and high fidelity rejection of coincident photons. CONCLUSIONS The model for PCD signal and noise performance agreed with measurements of detector signal, MTF, and NPS and provided a useful basis for understanding complex dependencies in PCD imaging performance and the potential advantages (and disadvantages) in comparison to EIDs as well as an important guide to task-based optimization in developing new PCD imaging systems.


Medical Physics | 2014

Dual-energy cone-beam CT with a flat-panel detector: effect of reconstruction algorithm on material classification.

Wojciech Zbijewski; Grace J. Gang; Jingyan Xu; Adam S. Wang; J. W. Stayman; Katsuyuki Taguchi; John A. Carrino; Jeffrey H. Siewerdsen

PURPOSE Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. METHODS Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50-200 mg/ml, 3-28.4 mm diameter) and solid iodine inserts (2-10 mg/ml, 3-28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. RESULTS Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼ 88% for FBP and PLQ, and ∼ 95% for PLTV at 3.1 mGy total dose, increasing to ∼ 95% for FBP and PLQ, and ∼ 98% for PLTV at 15.6 mGy total dose. For a fixed iodine concentration of 5 mg/ml and reconstructions maximizing overall accuracy across the range of insert diameters, the minimum diameter classified with accuracy >80% was ∼ 15 mm for FBP and PLQ and ∼ 10 mm for PLTV, improving to ∼ 7 mm for FBP and PLQ and ∼ 3 mm for PLTV at 15.6 mGy. The results indicate similar performance for FBP and PLQ and showed improved classification accuracy with edge-preserving PLTV. A slight preference for increased smoothing of the HE data was found. DE CBCT discrimination of iodine and bone in the knee was demonstrated with FBP and PLTV at 6.2 mGy total dose. CONCLUSIONS For iodine concentrations >5 mg/ml and detail size ∼ 20 mm, material classification accuracy of >90% was achieved in DE CBCT with both FBP and PL at total doses <10 mGy. Optimal performance was attained by selection of reconstruction parameters based on the differences in noise between HE and LE data, typically favoring stronger smoothing of the HE data, and by using penalties matched to the imaging task (e.g., edge-preserving PLTV in areas of uniform enhancement).


Proceedings of SPIE | 2016

Fluence-field modulated x-ray CT using multiple aperture devices

J. Webster Stayman; Aswin Mathews; Wojciech Zbijewski; Grace J. Gang; Jeffrey H. Siewerdsen; Satomi Kawamoto; Ira Blevis; Reuven Levinson

We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1-1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures.


Proceedings of SPIE | 2013

Modeling and control of nonstationary noise characteristics in filtered-backprojection and penalized likelihood image reconstruction

Grace J. Gang; J. W. Stayman; Wojciech Zbijewski; Jeffrey H. Siewerdsen

Purpose: Nonstationarity of CT noise presents a major challenge to the assessment of image quality. This work presents models for imaging performance in both filtered backprojection (FBP) and penalized likelihood (PL) reconstruction that describe not only the dependence on the imaging chain but also the dependence on the object as well as the nonstationary characteristics of the signal and noise. The work furthermore demonstrates the ability to impart control over the imaging process by adjusting reconstruction parameters to exploit nonstationarity in a manner advantageous to a particular imaging task. Methods: A cascaded systems analysis model was used to model the local noise-power spectrum (NPS) and modulation transfer function (MTF) for FBP reconstruction, with locality achieved by separate calculation of fluence and system gain for each view as a function of detector location. The covariance and impulse response function for PL reconstruction (quadratic penalty) were computed using the implicit function theorem and Taylor expansion. Detectability index was calculated under the assumption of local stationarity to show the variation in task-dependent image quality throughout the image for simple and complex, heterogeneous objects. Control of noise magnitude and correlation was achieved by applying a spatially varying roughness penalty in PL reconstruction in a manner that improved overall detectability. Results: The models provide a foundation for task-based imaging performance assessment in FBP and PL image reconstruction. For both FBP and PL, noise is anisotropic and varies in a manner dependent on the path length of each view traversing the object. The anisotropy in turn affects task performance, where detectability is enhanced or diminished depending on the frequency content of the task relative to that of the NPS. Spatial variation of the roughness penalty can be exploited to control noise magnitude and correlation (and hence detectability). Conclusions: Nonstationarity of image noise is a significant effect that can be modeled in both FBP and PL image reconstruction. Prevalent spatial-frequency-dependent metrics of spatial resolution and noise can be analyzed under assumptions of local stationarity, providing a means to analyze imaging performance as a function of location throughout the image. Knowledgeable selection of a spatially-varying roughness penalty in PL can potentially improve local noise and spatial resolution in a manner tuned to a particular imaging task. Keywords: cascaded systems analysis, nonstationarity, filtered backprojection, penalized-likelihood reconstruction, noise-power spectrum, covariance matrix, imaging task, detectability index


Proceedings of SPIE | 2016

Task-driven tube current modulation and regularization design in computed tomography with penalized-likelihood reconstruction

Grace J. Gang; Jeffrey H. Siewerdsen; J. W. Stayman

Purpose: This work applies task-driven optimization to design CT tube current modulation and directional regularization in penalized-likelihood (PL) reconstruction. The relative performance of modulation schemes commonly adopted for filtered-backprojection (FBP) reconstruction were also evaluated for PL in comparison. Methods: We adopt a task-driven imaging framework that utilizes a patient-specific anatomical model and information of the imaging task to optimize imaging performance in terms of detectability index (d’). This framework leverages a theoretical model based on implicit function theorem and Fourier approximations to predict local spatial resolution and noise characteristics of PL reconstruction as a function of the imaging parameters to be optimized. Tube current modulation was parameterized as a linear combination of Gaussian basis functions, and regularization was based on the design of (directional) pairwise penalty weights for the 8 in-plane neighboring voxels. Detectability was optimized using a covariance matrix adaptation evolutionary strategy algorithm. Task-driven designs were compared to conventional tube current modulation strategies for a Gaussian detection task in an abdomen phantom. Results: The task-driven design yielded the best performance, improving d’ by ~20% over an unmodulated acquisition. Contrary to FBP, PL reconstruction using automatic exposure control and modulation based on minimum variance (in FBP) performed worse than the unmodulated case, decreasing d’ by 16% and 9%, respectively. Conclusions: This work shows that conventional tube current modulation schemes suitable for FBP can be suboptimal for PL reconstruction. Thus, the proposed task-driven optimization provides additional opportunities for improved imaging performance and dose reduction beyond that achievable with conventional acquisition and reconstruction.


Proceedings of SPIE | 2015

Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm

S. Ouadah; J. W. Stayman; Grace J. Gang; Ali Uneri; Tina Ehtiati; Jeffrey H. Siewerdsen

Purpose: Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods: Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting “self-calibration” was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results: The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard (“true”) calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the “self” and “true” calibration methods were on the order of 10-3 mm-1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion: The proposed geometric “self” calibration provides a means for 3D imaging on general noncircular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced “task-based” 3D imaging methods now in development for robotic C-arms.


Medical Imaging 2018: Physics of Medical Imaging | 2018

Dynamic beam filtering for miscentered patients

Andrew Mao; William Shyr; Grace J. Gang; J. Webster Stayman

Traditional CT image acquisitions use bowtie filters to enable dose reduction. However, accurate patient centering within the bore of the CT scanner takes time and is often difficult to achieve precisely. Patient miscentering can result in significant dose, reconstruction noise, and CT number variations–raising overall exposure requirements. Approaches to estimate patient position from scout scans and perform dynamic spatial beam filtration during acquisition are developed and applied in physical experiments on a CT test bench using different beam filtration strategies. While various dynamic beam modulation strategies have been proposed, we focus on two different approaches: 1) simple attenuation-based beam modulation using a translating bowtie filter, and 2) dynamic beam modulation using multiple aperture devices, an emerging beam filtration strategy base on binary filtration of the x-ray beam using variable width slits in a high-density beam blocker. Improved dose utilization and more consistent image performance is demonstrated for miscentered objects and dynamic beam filtration as compared to static filtration. The new methodology has the potential to relax patient centering requirements within the scanner, reduce set-up time, and facilitate additional CT dose reductions.


Medical Imaging 2018: Physics of Medical Imaging | 2018

Prospective image quality analysis and control for prior-image-based reconstruction of low-dose CT

Cheng Ting Lin; Hao Zhang; Hao Dang; Grace J. Gang; J. W. Stayman; Jeffrey H. Siewerdsen; Marc S. Sussman

Purpose: Prior-image-based reconstruction (PIBR) is a powerful tool for low-dose CT, however, the nonlinear behavior of such approaches are generally difficult to predict and control. Similarly, traditional image quality metrics do not capture potential biases exhibited in PIBR images. In this work, we identify a new bias metric and construct an analytical framework for prospectively predicting and controlling the relationship between prior image regularization strength and this bias in a reliable and quantitative fashion. Methods: Bias associated with prior image regularization in PIBR can be described as the fraction of actual contrast change (between the prior image and current anatomy) that appears in the reconstruction. Using local approximation of the nonlinear PIBR objective, we develop an analytical relationship between local regularization, fractional contrast reconstructed, and true contrast change. This analytic tool allows prediction bias properties in a reconstructed PIBR image and includes the dependencies on the data acquisition, patient anatomy and change, and reconstruction parameters. Predictions are leveraged to provide reliable and repeatable image properties for varying data fidelity in simulation and physical cadaver experiments. Results: The proposed analytical approach permits accurate prediction of reconstructed contrast relative to a gold standard based on exhaustive search based on numerous iterative reconstructions. The framework is used to control regularization parameters to enforce consistent change reconstructions over varying fluence levels and varying numbers of projection angles – enabling bias properties that are less location- and acquisition-dependent. Conclusions: While PIBR methods have demonstrated a substantial ability for dose reduction, image properties associated with those images have been difficult to express and quantify using traditional metrics. The novel framework presented in this work not only quantifies this bias in an intuitive fashion, but it gives a way to predict and control the bias. Reliable and predictable reconstruction methods are a requirement for clinical imaging systems and the proposed framework is an important step translating PIBR methods to clinical application.


Proceedings of SPIE | 2017

Joint optimization of fluence field modulation and regularization in task-driven computed tomography

Grace J. Gang; Jeffrey H. Siewerdsen; J. W. Stayman

Purpose: This work presents a task-driven joint optimization of fluence field modulation (FFM) and regularization in quadratic penalized-likelihood (PL) reconstruction. Conventional FFM strategies proposed for filtered-backprojection (FBP) are evaluated in the context of PL reconstruction for comparison. Methods: We present a task-driven framework that leverages prior knowledge of the patient anatomy and imaging task to identify FFM and regularization. We adopted a maxi-min objective that ensures a minimum level of detectability index (d’) across sample locations in the image volume. The FFM designs were parameterized by 2D Gaussian basis functions to reduce dimensionality of the optimization and basis function coefficients were estimated using the covariance matrix adaptation evolutionary strategy (CMA-ES) algorithm. The FFM was jointly optimized with both space-invariant and spatially-varying regularization strength (β) - the former via an exhaustive search through discrete values and the latter using an alternating optimization where β was exhaustively optimized locally and interpolated to form a spatially-varying map. Results: The optimal FFM inverts as β increases, demonstrating the importance of a joint optimization. For the task and object investigated, the optimal FFM assigns more fluence through less attenuating views, counter to conventional FFM schemes proposed for FBP. The maxi-min objective homogenizes detectability throughout the image and achieves a higher minimum detectability than conventional FFM strategies. Conclusions: The task-driven FFM designs found in this work are counter to conventional patterns for FBP and yield better performance in terms of the maxi-min objective, suggesting opportunities for improved image quality and/or dose reduction when model-based reconstructions are applied in conjunction with FFM.


Proceedings of SPIE | 2017

Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference: first patient studies

Hao Zhang; Grace J. Gang; Junghoon Lee; John Wong; J. Webster Stayman

Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients – one abdominal study and one head-and-neck study – were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.

Collaboration


Dive into the Grace J. Gang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. W. Stayman

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Carrino

Hospital for Special Surgery

View shared research outputs
Top Co-Authors

Avatar

Junghoon Lee

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuyuki Taguchi

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jingyan Xu

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge