Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graciela Gonzalez is active.

Publication


Featured researches published by Graciela Gonzalez.


pacific symposium on biocomputing | 2007

BANNER: An executable survey of advances in biomedical named entity recognition

Robert Leaman; Graciela Gonzalez

There has been an increasing amount of research on biomedical named entity recognition, the most basic text extraction problem, resulting in significant progress by different research teams around the world. This has created a need for a freely-available, open source system implementing the advances described in the literature. In this paper we present BANNER, an open-source, executable survey of advances in biomedical named entity recognition, intended to serve as a benchmark for the field. BANNER is implemented in Java as a machine-learning system based on conditional random fields and includes a wide survey of the best techniques recently described in the literature. It is designed to maximize domain independence by not employing brittle semantic features or rule-based processing steps, and achieves significantly better performance than existing baseline systems. It is therefore useful to developers as an extensible NER implementation, to researchers as a standard for comparing innovative techniques, and to biologists requiring the ability to find novel entities in large amounts of text.


Journal of Biomedical Informatics | 2015

Utilizing social media data for pharmacovigilance

Abeed Sarker; Rachel E. Ginn; Azadeh Nikfarjam; Karen O'Connor; Karen Smith; Swetha Jayaraman; Tejaswi Upadhaya; Graciela Gonzalez

OBJECTIVE Automatic monitoring of Adverse Drug Reactions (ADRs), defined as adverse patient outcomes caused by medications, is a challenging research problem that is currently receiving significant attention from the medical informatics community. In recent years, user-posted data on social media, primarily due to its sheer volume, has become a useful resource for ADR monitoring. Research using social media data has progressed using various data sources and techniques, making it difficult to compare distinct systems and their performances. In this paper, we perform a methodical review to characterize the different approaches to ADR detection/extraction from social media, and their applicability to pharmacovigilance. In addition, we present a potential systematic pathway to ADR monitoring from social media. METHODS We identified studies describing approaches for ADR detection from social media from the Medline, Embase, Scopus and Web of Science databases, and the Google Scholar search engine. Studies that met our inclusion criteria were those that attempted to extract ADR information posted by users on any publicly available social media platform. We categorized the studies according to different characteristics such as primary ADR detection approach, size of corpus, data source(s), availability, and evaluation criteria. RESULTS Twenty-two studies met our inclusion criteria, with fifteen (68%) published within the last two years. However, publicly available annotated data is still scarce, and we found only six studies that made the annotations used publicly available, making system performance comparisons difficult. In terms of algorithms, supervised classification techniques to detect posts containing ADR mentions, and lexicon-based approaches for extraction of ADR mentions from texts have been the most popular. CONCLUSION Our review suggests that interest in the utilization of the vast amounts of available social media data for ADR monitoring is increasing. In terms of sources, both health-related and general social media data have been used for ADR detection-while health-related sources tend to contain higher proportions of relevant data, the volume of data from general social media websites is significantly higher. There is still very limited amount of annotated data publicly available , and, as indicated by the promising results obtained by recent supervised learning approaches, there is a strong need to make such data available to the research community.


Journal of the American Medical Informatics Association | 2015

Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features

Azadeh Nikfarjam; Abeed Sarker; Karen O'Connor; Rachel E. Ginn; Graciela Gonzalez

Abstract Objective Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks, particularly for pharmacovigilance, via the use of natural language processing (NLP) techniques. However, the language in social media is highly informal, and user-expressed medical concepts are often nontechnical, descriptive, and challenging to extract. There has been limited progress in addressing these challenges, and thus far, advanced machine learning-based NLP techniques have been underutilized. Our objective is to design a machine learning-based approach to extract mentions of adverse drug reactions (ADRs) from highly informal text in social media. Methods We introduce ADRMine, a machine learning-based concept extraction system that uses conditional random fields (CRFs). ADRMine utilizes a variety of features, including a novel feature for modeling words’ semantic similarities. The similarities are modeled by clustering words based on unsupervised, pretrained word representation vectors (embeddings) generated from unlabeled user posts in social media using a deep learning technique. Results ADRMine outperforms several strong baseline systems in the ADR extraction task by achieving an F-measure of 0.82. Feature analysis demonstrates that the proposed word cluster features significantly improve extraction performance. Conclusion It is possible to extract complex medical concepts, with relatively high performance, from informal, user-generated content. Our approach is particularly scalable, suitable for social media mining, as it relies on large volumes of unlabeled data, thus diminishing the need for large, annotated training data sets.


BMC Bioinformatics | 2011

The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text

Martin Krallinger; Miguel Vazquez; Florian Leitner; David Salgado; Andrew Chatr-aryamontri; Andrew Winter; Livia Perfetto; Leonardo Briganti; Luana Licata; Marta Iannuccelli; Luisa Castagnoli; Gianni Cesareni; Mike Tyers; Gerold Schneider; Fabio Rinaldi; Robert Leaman; Graciela Gonzalez; Sérgio Matos; Sun Kim; W. John Wilbur; Luis Mateus Rocha; Hagit Shatkay; Ashish V. Tendulkar; Shashank Agarwal; Feifan Liu; Xinglong Wang; Rafal Rak; Keith Noto; Charles Elkan; Zhiyong Lu

BackgroundDetermining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects including how the end user would oversee the generated output, for instance by providing ranked results, textual evidence for human interpretation or measuring time savings by using automated systems. Detecting articles describing complex biological events like PPIs was addressed in the Article Classification Task (ACT), where participants were asked to implement tools for detecting PPI-describing abstracts. Therefore the BCIII-ACT corpus was provided, which includes a training, development and test set of over 12,000 PPI relevant and non-relevant PubMed abstracts labeled manually by domain experts and recording also the human classification times. The Interaction Method Task (IMT) went beyond abstracts and required mining for associations between more than 3,500 full text articles and interaction detection method ontology concepts that had been applied to detect the PPIs reported in them.ResultsA total of 11 teams participated in at least one of the two PPI tasks (10 in ACT and 8 in the IMT) and a total of 62 persons were involved either as participants or in preparing data sets/evaluating these tasks. Per task, each team was allowed to submit five runs offline and another five online via the BioCreative Meta-Server. From the 52 runs submitted for the ACT, the highest Matthews Correlation Coefficient (MCC) score measured was 0.55 at an accuracy of 89% and the best AUC iP/R was 68%. Most ACT teams explored machine learning methods, some of them also used lexical resources like MeSH terms, PSI-MI concepts or particular lists of verbs and nouns, some integrated NER approaches. For the IMT, a total of 42 runs were evaluated by comparing systems against manually generated annotations done by curators from the BioGRID and MINT databases. The highest AUC iP/R achieved by any run was 53%, the best MCC score 0.55. In case of competitive systems with an acceptable recall (above 35%) the macro-averaged precision ranged between 50% and 80%, with a maximum F-Score of 55%.ConclusionsThe results of the ACT task of BioCreative III indicate that classification of large unbalanced article collections reflecting the real class imbalance is still challenging. Nevertheless, text-mining tools that report ranked lists of relevant articles for manual selection can potentially reduce the time needed to identify half of the relevant articles to less than 1/4 of the time when compared to unranked results. Detecting associations between full text articles and interaction detection method PSI-MI terms (IMT) is more difficult than might be anticipated. This is due to the variability of method term mentions, errors resulting from pre-processing of articles provided as PDF files, and the heterogeneity and different granularity of method term concepts encountered in the ontology. However, combining the sophisticated techniques developed by the participants with supporting evidence strings derived from the articles for human interpretation could result in practical modules for biological annotation workflows.


european conference on computational biology | 2008

Inter-species normalization of gene mentions with GNAT

Jörg Hakenberg; Conrad Plake; Robert Leaman; Michael Schroeder; Graciela Gonzalez

MOTIVATION Text mining in the biomedical domain aims at helping researchers to access information contained in scientific publications in a faster, easier and more complete way. One step towards this aim is the recognition of named entities and their subsequent normalization to database identifiers. Normalization helps to link objects of potential interest, such as genes, to detailed information not contained in a publication; it is also key for integrating different knowledge sources. From an information retrieval perspective, normalization facilitates indexing and querying. Gene mention normalization (GN) is particularly challenging given the high ambiguity of gene names: they refer to orthologous or entirely different genes, are named after phenotypes and other biomedical terms, or they resemble common English words. RESULTS We present the first publicly available system, GNAT, reported to handle inter-species GN. Our method uses extensive background knowledge on genes to resolve ambiguous names to EntrezGene identifiers. It performs comparably to single-species approaches proposed by us and others. On a benchmark set derived from BioCreative 1 and 2 data that contains genes from 13 species, GNAT achieves an F-measure of 81.4% (90.8% precision at 73.8% recall). For the single-species task, we report an F-measure of 85.4% on human genes. AVAILABILITY A web-frontend is available at http://cbioc.eas.asu.edu/gnat/. GNAT will also be available within the BioCreativeMetaService project, see http://bcms.bioinfo.cnio.es. SUPPLEMENTARY INFORMATION The test data set, lexica, and links toexternal data are available at http://cbioc.eas.asu.edu/gnat/


Journal of Biomedical Informatics | 2015

Portable automatic text classification for adverse drug reaction detection via multi-corpus training

Abeed Sarker; Graciela Gonzalez

OBJECTIVE Automatic detection of adverse drug reaction (ADR) mentions from text has recently received significant interest in pharmacovigilance research. Current research focuses on various sources of text-based information, including social media-where enormous amounts of user posted data is available, which have the potential for use in pharmacovigilance if collected and filtered accurately. The aims of this study are: (i) to explore natural language processing (NLP) approaches for generating useful features from text, and utilizing them in optimized machine learning algorithms for automatic classification of ADR assertive text segments; (ii) to present two data sets that we prepared for the task of ADR detection from user posted internet data; and (iii) to investigate if combining training data from distinct corpora can improve automatic classification accuracies. METHODS One of our three data sets contains annotated sentences from clinical reports, and the two other data sets, built in-house, consist of annotated posts from social media. Our text classification approach relies on generating a large set of features, representing semantic properties (e.g., sentiment, polarity, and topic), from short text nuggets. Importantly, using our expanded feature sets, we combine training data from different corpora in attempts to boost classification accuracies. RESULTS Our feature-rich classification approach performs significantly better than previously published approaches with ADR class F-scores of 0.812 (previously reported best: 0.770), 0.538 and 0.678 for the three data sets. Combining training data from multiple compatible corpora further improves the ADR F-scores for the in-house data sets to 0.597 (improvement of 5.9 units) and 0.704 (improvement of 2.6 units) respectively. CONCLUSIONS Our research results indicate that using advanced NLP techniques for generating information rich features from text can significantly improve classification accuracies over existing benchmarks. Our experiments illustrate the benefits of incorporating various semantic features such as topics, concepts, sentiments, and polarities. Finally, we show that integration of information from compatible corpora can significantly improve classification performance. This form of multi-corpus training may be particularly useful in cases where data sets are heavily imbalanced (e.g., social media data), and may reduce the time and costs associated with the annotation of data in the future.


Bioinformatics | 2011

The GNAT library for local and remote gene mention normalization

Jörg Hakenberg; Martin Gerner; Maximilian Haeussler; Illés Solt; Conrad Plake; Michael Schroeder; Graciela Gonzalez; Goran Nenadic; Casey M. Bergman

Summary: Identifying mentions of named entities, such as genes or diseases, and normalizing them to database identifiers have become an important step in many text and data mining pipelines. Despite this need, very few entity normalization systems are publicly available as source code or web services for biomedical text mining. Here we present the Gnat Java library for text retrieval, named entity recognition, and normalization of gene and protein mentions in biomedical text. The library can be used as a component to be integrated with other text-mining systems, as a framework to add user-specific extensions, and as an efficient stand-alone application for the identification of gene and protein names for data analysis. On the BioCreative III test data, the current version of Gnat achieves a Tap-20 score of 0.1987. Availability: The library and web services are implemented in Java and the sources are available from http://gnat.sourceforge.net. Contact: [email protected]


pacific symposium on biocomputing | 2006

Mining gene-disease relationships from biomedical literature: weighting protein-protein interactions and connectivity measures.

Graciela Gonzalez; Juan C. Uribe; Luis Tari; Colleen Brophy; Chitta Baral

MOTIVATION The promises of the post-genome era disease-related discoveries and advances have yet to be fully realized, with many opportunities for discovery hiding in the millions of biomedical papers published since. Public databases give access to data extracted from the literature by teams of experts, but their coverage is often limited and lags behind recent discoveries. We present a computational method that combines data extracted from the literature with data from curated sources in order to uncover possible gene-disease relationships that are not directly stated or were missed by the initial mining. METHOD An initial set of genes and proteins is obtained from gene-disease relationships extracted from PubMed abstracts using natural language processing. Interactions involving the corresponding proteins are similarly extracted and integrated with interactions from curated databases (such as BIND and DIP), assigning a confidence measure to each interaction depending on its source. The augmented list of genes and gene products is then ranked combining two scores: one that reflects the strength of the relationship with the initial set of genes and incorporates user-defined weights and another that reflects the importance of the gene in maintaining the connectivity of the network. We applied the method to atherosclerosis to assess its effectiveness. RESULTS Top-ranked proteins from the method are related to atherosclerosis with accuracy between 0.85 to 1.00 for the top 20 and 0.64 to 0.80 for the top 90 if duplicates are ignored, with 45% of the top 20 and 75% of the top 90 derived by the method, not extracted from text. Thus, though the initial gene set and interactions were automatically extracted from text (and subject to the impreciseness of automatic extraction), their use for further hypothesis generation is valuable given adequate computational analysis.


Briefings in Bioinformatics | 2016

Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery

Graciela Gonzalez; Tasnia Tahsin; Britton C. Goodale; Anna C. Greene; Casey S. Greene

Precision medicine will revolutionize the way we treat and prevent disease. A major barrier to the implementation of precision medicine that clinicians and translational scientists face is understanding the underlying mechanisms of disease. We are starting to address this challenge through automatic approaches for information extraction, representation and analysis. Recent advances in text and data mining have been applied to a broad spectrum of key biomedical questions in genomics, pharmacogenomics and other fields. We present an overview of the fundamental methods for text and data mining, as well as recent advances and emerging applications toward precision medicine.


IEEE Transactions on Knowledge and Data Engineering | 2012

Incremental Information Extraction Using Relational Databases

Luis Tari; Phan Huy Tu; Jörg Hakenberg; Yi Chen; Tran Cao Son; Graciela Gonzalez; Chitta Baral

Information extraction systems are traditionally implemented as a pipeline of special-purpose processing modules targeting the extraction of a particular kind of information. A major drawback of such an approach is that whenever a new extraction goal emerges or a module is improved, extraction has to be reapplied from scratch to the entire text corpus even though only a small part of the corpus might be affected. In this paper, we describe a novel approach for information extraction in which extraction needs are expressed in the form of database queries, which are evaluated and optimized by database systems. Using database queries for information extraction enables generic extraction and minimizes reprocessing of data by performing incremental extraction to identify which part of the data is affected by the change of components or goals. Furthermore, our approach provides automated query generation components so that casual users do not have to learn the query language in order to perform extraction. To demonstrate the feasibility of our incremental extraction approach, we performed experiments to highlight two important aspects of an information extraction system: efficiency and quality of extraction results. Our experiments show that in the event of deployment of a new module, our incremental extraction approach reduces the processing time by 89.64 percent as compared to a traditional pipeline approach. By applying our methods to a corpus of 17 million biomedical abstracts, our experiments show that the query performance is efficient for real-time applications. Our experiments also revealed that our approach achieves high quality extraction results.

Collaboration


Dive into the Graciela Gonzalez's collaboration.

Top Co-Authors

Avatar

Abeed Sarker

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chitta Baral

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Robert Leaman

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Tari

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Scotch

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen O'Connor

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge