Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Hakenberg is active.

Publication


Featured researches published by Jörg Hakenberg.


PLOS Computational Biology | 2010

A comprehensive benchmark of kernel methods to extract protein-protein interactions from literature.

Domonkos Tikk; Philippe Thomas; Peter Palaga; Jörg Hakenberg; Ulf Leser

The most important way of conveying new findings in biomedical research is scientific publication. Extraction of protein–protein interactions (PPIs) reported in scientific publications is one of the core topics of text mining in the life sciences. Recently, a new class of such methods has been proposed - convolution kernels that identify PPIs using deep parses of sentences. However, comparing published results of different PPI extraction methods is impossible due to the use of different evaluation corpora, different evaluation metrics, different tuning procedures, etc. In this paper, we study whether the reported performance metrics are robust across different corpora and learning settings and whether the use of deep parsing actually leads to an increase in extraction quality. Our ultimate goal is to identify the one method that performs best in real-life scenarios, where information extraction is performed on unseen text and not on specifically prepared evaluation data. We performed a comprehensive benchmarking of nine different methods for PPI extraction that use convolution kernels on rich linguistic information. Methods were evaluated on five different public corpora using cross-validation, cross-learning, and cross-corpus evaluation. Our study confirms that kernels using dependency trees generally outperform kernels based on syntax trees. However, our study also shows that only the best kernel methods can compete with a simple rule-based approach when the evaluation prevents information leakage between training and test corpora. Our results further reveal that the F-score of many approaches drops significantly if no corpus-specific parameter optimization is applied and that methods reaching a good AUC score often perform much worse in terms of F-score. We conclude that for most kernels no sensible estimation of PPI extraction performance on new text is possible, given the current heterogeneity in evaluation data. Nevertheless, our study shows that three kernels are clearly superior to the other methods.


european conference on computational biology | 2008

Inter-species normalization of gene mentions with GNAT

Jörg Hakenberg; Conrad Plake; Robert Leaman; Michael Schroeder; Graciela Gonzalez

MOTIVATION Text mining in the biomedical domain aims at helping researchers to access information contained in scientific publications in a faster, easier and more complete way. One step towards this aim is the recognition of named entities and their subsequent normalization to database identifiers. Normalization helps to link objects of potential interest, such as genes, to detailed information not contained in a publication; it is also key for integrating different knowledge sources. From an information retrieval perspective, normalization facilitates indexing and querying. Gene mention normalization (GN) is particularly challenging given the high ambiguity of gene names: they refer to orthologous or entirely different genes, are named after phenotypes and other biomedical terms, or they resemble common English words. RESULTS We present the first publicly available system, GNAT, reported to handle inter-species GN. Our method uses extensive background knowledge on genes to resolve ambiguous names to EntrezGene identifiers. It performs comparably to single-species approaches proposed by us and others. On a benchmark set derived from BioCreative 1 and 2 data that contains genes from 13 species, GNAT achieves an F-measure of 81.4% (90.8% precision at 73.8% recall). For the single-species task, we report an F-measure of 85.4% on human genes. AVAILABILITY A web-frontend is available at http://cbioc.eas.asu.edu/gnat/. GNAT will also be available within the BioCreativeMetaService project, see http://bcms.bioinfo.cnio.es. SUPPLEMENTARY INFORMATION The test data set, lexica, and links toexternal data are available at http://cbioc.eas.asu.edu/gnat/


Nature Biotechnology | 2016

Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases

Rong Chen; Lisong Shi; Jörg Hakenberg; Brian Thomas Naughton; Pamela Sklar; Jianguo Zhang; Hanlin Zhou; Lifeng Tian; Om Prakash; Mathieu Lemire; Patrick Sleiman; Wei-Yi Cheng; Wanting Chen; Hardik Shah; Yulan Shen; Menachem Fromer; Larsson Omberg; Matthew A. Deardorff; Elaine H. Zackai; Jason Bobe; Elissa Levin; Thomas J. Hudson; Leif Groop; Jun Wang; Hakon Hakonarson; Anne Wojcicki; George A. Diaz; Lisa Edelmann; Eric E. Schadt; Stephen H. Friend

Genetic studies of human disease have traditionally focused on the detection of disease-causing mutations in afflicted individuals. Here we describe a complementary approach that seeks to identify healthy individuals resilient to highly penetrant forms of genetic childhood disorders. A comprehensive screen of 874 genes in 589,306 genomes led to the identification of 13 adults harboring mutations for 8 severe Mendelian conditions, with no reported clinical manifestation of the indicated disease. Our findings demonstrate the promise of broadening genetic studies to systematically search for well individuals who are buffering the effects of rare, highly penetrant, deleterious mutations. They also indicate that incomplete penetrance for Mendelian diseases is likely more common than previously believed. The identification of resilient individuals may provide a first step toward uncovering protective genetic variants that could help elucidate the mechanisms of Mendelian diseases and new therapeutic strategies.


Genome Biology | 2008

Gene mention normalization and interaction extraction with context models and sentence motifs

Jörg Hakenberg; Conrad Plake; Loïc Royer; Hendrik Strobelt; Ulf Leser; Michael Schroeder

Background:The goal of text mining is to make the information conveyed in scientific publications accessible to structured search and automatic analysis. Two important subtasks of text mining are entity mention normalization - to identify biomedical objects in text - and extraction of qualified relationships between those objects. We describe a method for identifying genes and relationships between proteins.Results:We present solutions to gene mention normalization and extraction of protein-protein interactions. For the first task, we identify genes by using background knowledge on each gene, namely annotations related to function, location, disease, and so on. Our approach currently achieves an f-measure of 86.4% on the BioCreative II gene normalization data. For the extraction of protein-protein interactions, we pursue an approach that builds on classical sequence analysis: motifs derived from multiple sequence alignments. The method achieves an f-measure of 24.4% (micro-average) in the BioCreative II interaction pair subtask.Conclusion:For gene mention normalization, our approach outperforms strategies that utilize only the matching of genes names against dictionaries, without invoking further knowledge on each gene. Motifs derived from alignments of sentences are successful at identifying protein interactions in text; the approach we present in this report is fully automated and performs similarly to systems that require human intervention at one or more stages.Availability:Our methods for gene, protein, and species identification, and extraction of protein-protein are available as part of the BioCreative Meta Services (BCMS), see http://bcms.bioinfo.cnio.es/.


Bioinformatics | 2011

The GNAT library for local and remote gene mention normalization

Jörg Hakenberg; Martin Gerner; Maximilian Haeussler; Illés Solt; Conrad Plake; Michael Schroeder; Graciela Gonzalez; Goran Nenadic; Casey M. Bergman

Summary: Identifying mentions of named entities, such as genes or diseases, and normalizing them to database identifiers have become an important step in many text and data mining pipelines. Despite this need, very few entity normalization systems are publicly available as source code or web services for biomedical text mining. Here we present the Gnat Java library for text retrieval, named entity recognition, and normalization of gene and protein mentions in biomedical text. The library can be used as a component to be integrated with other text-mining systems, as a framework to add user-specific extensions, and as an efficient stand-alone application for the identification of gene and protein names for data analysis. On the BioCreative III test data, the current version of Gnat achieves a Tap-20 score of 0.1987. Availability: The library and web services are implemented in Java and the sources are available from http://gnat.sourceforge.net. Contact: [email protected]


BMC Bioinformatics | 2005

Systematic feature evaluation for gene name recognition

Jörg Hakenberg; Steffen Bickel; Conrad Plake; Ulf Brefeld; Hagen Zahn; Lukas C. Faulstich; Ulf Leser; Tobias Scheffer

In task 1A of the BioCreAtIvE evaluation, systems had to be devised that recognize words and phrases forming gene or protein names in natural language sentences. We approach this problem by building a word classification system based on a sliding window approach with a Support Vector Machine, combined with a pattern-based post-processing for the recognition of phrases. The performance of such a system crucially depends on the type of features chosen for consideration by the classification method, such as pre- or postfixes, character n-grams, patterns of capitalization, or classification of preceding or following words. We present a systematic approach to evaluate the performance of different feature sets based on recursive feature elimination, RFE. Based on a systematic reduction of the number of features used by the system, we can quantify the impact of different feature sets on the results of the word classification problem. This helps us to identify descriptive features, to learn about the structure of the problem, and to design systems that are faster and easier to understand. We observe that the SVM is robust to redundant features. RFE improves the performance by 0.7%, compared to using the complete set of attributes. Moreover, a performance that is only 2.3% below this maximum can be obtained using fewer than 5% of the features.


Omics A Journal of Integrative Biology | 2004

Finding kinetic parameters using text mining.

Jörg Hakenberg; Sebastian Schmeier; Axel Kowald; Edda Klipp; Ulf Leser

The mathematical modeling and description of complex biological processes has become more and more important over the last years. Systems biology aims at the computational simulation of complex systems, up to whole cell simulations. An essential part focuses on solving a large number of parameterized differential equations. However, measuring those parameters is an expensive task, and finding them in the literature is very laborious. We developed a text mining system that supports researchers in their search for experimentally obtained parameters for kinetic models. Our system classifies full text documents regarding the question whether or not they contain appropriate data using a support vector machine. We evaluated our approach on a manually tagged corpus of 800 documents and found that it outperforms keyword searches in abstracts by a factor of five in terms of precision.


IEEE Transactions on Knowledge and Data Engineering | 2012

Incremental Information Extraction Using Relational Databases

Luis Tari; Phan Huy Tu; Jörg Hakenberg; Yi Chen; Tran Cao Son; Graciela Gonzalez; Chitta Baral

Information extraction systems are traditionally implemented as a pipeline of special-purpose processing modules targeting the extraction of a particular kind of information. A major drawback of such an approach is that whenever a new extraction goal emerges or a module is improved, extraction has to be reapplied from scratch to the entire text corpus even though only a small part of the corpus might be affected. In this paper, we describe a novel approach for information extraction in which extraction needs are expressed in the form of database queries, which are evaluated and optimized by database systems. Using database queries for information extraction enables generic extraction and minimizes reprocessing of data by performing incremental extraction to identify which part of the data is affected by the change of components or goals. Furthermore, our approach provides automated query generation components so that casual users do not have to learn the query language in order to perform extraction. To demonstrate the feasibility of our incremental extraction approach, we performed experiments to highlight two important aspects of an information extraction system: efficiency and quality of extraction results. Our experiments show that in the event of deployment of a new module, our incremental extraction approach reduces the processing time by 89.64 percent as compared to a traditional pipeline approach. By applying our methods to a corpus of 17 million biomedical abstracts, our experiments show that the query performance is efficient for real-time applications. Our experiments also revealed that our approach achieves high quality extraction results.


IEEE/ACM Transactions on Computational Biology and Bioinformatics | 2010

Efficient Extraction of Protein-Protein Interactions from Full-Text Articles

Jörg Hakenberg; Robert Leaman; Nguyen Ha Vo; Siddhartha Jonnalagadda; Ryan Sullivan; Christopher M. Miller; Luis Tari; Chitta Baral; Graciela Gonzalez

Proteins and their interactions govern virtually all cellular processes, such as regulation, signaling, metabolism, and structure. Most experimental findings pertaining to such interactions are discussed in research papers, which, in turn, get curated by protein interaction databases. Authors, editors, and publishers benefit from efforts to alleviate the tasks of searching for relevant papers, evidence for physical interactions, and proper identifiers for each protein involved. The BioCreative II.5 community challenge addressed these tasks in a competition-style assessment to evaluate and compare different methodologies, to make aware of the increasing accuracy of automated methods, and to guide future implementations. In this paper, we present our approaches for protein-named entity recognition, including normalization, and for extraction of protein-protein interactions from full text. Our overall goal is to identify efficient individual components, and we compare various compositions to handle a single full-text article in between 10 seconds and 2 minutes. We propose strategies to transfer document-level annotations to the sentence-level, which allows for the creation of a more fine-grained training corpus; we use this corpus to automatically derive around 5,000 patterns. We rank sentences by relevance to the task of finding novel interactions with physical evidence, using a sentence classifier built from this training corpus. Heuristics for paraphrasing sentences help to further remove unnecessary information that might interfere with patterns, such as additional adjectives, clauses, or bracketed expressions. In BioCreative II.5, we achieved an f-score of 22 percent for finding protein interactions, and 43 percent for mapping proteins to UniProt IDs; disregarding species, f-scores are 30 percent and 55 percent, respectively. On average, our best-performing setup required around 2 minutes per full text. All data and pattern sets as well as Java classes that extend third-party software are available as supplementary information (see Appendix).


Nucleic Acids Research | 2009

GoGene: gene annotation in the fast lane

Conrad Plake; Loïc Royer; Rainer Winnenburg; Jörg Hakenberg; Michael Schroeder

High-throughput screens such as microarrays and RNAi screens produce huge amounts of data. They typically result in hundreds of genes, which are often further explored and clustered via enriched GeneOntology terms. The strength of such analyses is that they build on high-quality manual annotations provided with the GeneOntology. However, the weakness is that annotations are restricted to process, function and location and that they do not cover all known genes in model organisms. GoGene addresses this weakness by complementing high-quality manual annotation with high-throughput text mining extracting co-occurrences of genes and ontology terms from literature. GoGene contains over 4 000 000 associations between genes and gene-related terms for 10 model organisms extracted from more than 18 000 000 PubMed entries. It does not cover only process, function and location of genes, but also biomedical categories such as diseases, compounds, techniques and mutations. By bringing it all together, GoGene provides the most recent and most complete facts about genes and can rank them according to novelty and importance. GoGene accepts keywords, gene lists, gene sequences and protein sequences as input and supports search for genes in PubMed, EntrezGene and via BLAST. Since all associations of genes to terms are supported by evidence in the literature, the results are transparent and can be verified by the user. GoGene is available at http://gopubmed.org/gogene.

Collaboration


Dive into the Jörg Hakenberg's collaboration.

Top Co-Authors

Avatar

Ulf Leser

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Conrad Plake

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Tari

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Chitta Baral

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei-Yi Cheng

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Meng Ma

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Robert Leaman

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge