Graeme L. Conn
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Graeme L. Conn.
Current Biology | 2005
Yiling Nie; Stephan Vigues; Jeanette R. Hobbs; Graeme L. Conn; Steven D. Munger
Animals utilize hundreds of distinct G protein-coupled receptor (GPCR)-type chemosensory receptors to detect a diverse array of chemical signals in their environment, including odors, pheromones, and tastants. However, the molecular mechanisms by which these receptors selectively interact with their cognate ligands remain poorly understood. There is growing evidence that many chemosensory receptors exist in multimeric complexes, though little is known about the relative contributions of individual subunits to receptor functions. Here, we report that each of the two subunits in the heteromeric T1R2:T1R3 sweet taste receptor binds sweet stimuli though with distinct affinities and conformational changes. Furthermore, ligand affinities for T1R3 are drastically reduced by the introduction of a single amino acid change associated with decreased sweet taste sensitivity in behaving mice. Thus, individual T1R subunits increase the receptive range of the sweet taste receptor, offering a functional mechanism for phenotypic variations in sweet taste.
Nucleic Acids Research | 2007
Alison J. Hobro; Mansour Rouhi; Ewan W. Blanch; Graeme L. Conn
Raman and Raman optical activity (ROA) spectra were collected for four RNA oligonucleotides based on the EMCV IRES Domain I to assess the contributions of helix, GNRA tetraloop, U·C mismatch base pair and pyrimidine-rich bulge structures to each. Both Raman and ROA spectra show overall similarities for all oligonucleotides, reflecting the presence of the same base paired helical regions and GNRA tetraloop in each. Specific bands are sensitive to the effect of the mismatch and asymmetric bulge on the structure of the RNA. Raman band changes are observed that reflect the structural contexts of adenine residues, disruption of A-form helical structure, and incorporation of pyrimidine bases in non-helical regions. The ROA spectra are also sensitive to conformational mobility of ribose sugars, and verify a decrease in A-type helix content upon introduction of the pyrimidine-rich bulge. Several Raman and ROA bands also clearly show cooperative effects between the mismatch and pyrimidine-rich bulge motifs on the structure of the RNA. The complementary nature of Raman and ROA spectra provides detailed and highly sensitive information about the local environments of bases, and secondary and tertiary structures, and has the potential to yield spectral signatures for a wide range of RNA structural motifs.
Nature Communications | 2014
William H. Hudson; Mark R. Pickard; Ian Mitchelle S. de Vera; Emily G. Kuiper; Mirna Mourtada-Maarabouni; Graeme L. Conn; Douglas J. Kojetin; Gwyn T. Williams; Eric A. Ortlund
The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.
Nucleic Acids Research | 2009
Miloje Savic; Josip Lovrić; Tatjana Ilic Tomic; Branka Vasiljevic; Graeme L. Conn
The 16S ribosomal RNA methyltransferase enzymes that modify nucleosides in the drug binding site to provide self-resistance in aminoglycoside-producing micro-organisms have been proposed to comprise two distinct groups of S-adenosyl-l-methionine (SAM)-dependent RNA enzymes, namely the Kgm and Kam families. Here, the nucleoside methylation sites for three Kgm family methyltransferases, Sgm from Micromonospora zionensis, GrmA from Micromonospora echinospora and Krm from Frankia sp. Ccl3, were experimentally determined as G1405 by MALDI-ToF mass spectrometry. These results significantly extend the list of securely characterized G1405 modifying enzymes and experimentally validate their grouping into a single enzyme family. Heterologous expression of the KamB methyltransferase from Streptoalloteichus tenebrarius experimentally confirmed the requirement for an additional 60 amino acids on the deduced KamB N-terminus to produce an active methyltransferase acting at A1408, as previously suggested by an in silico analysis. Finally, the modifications at G1405 and A1408, were shown to confer partially overlapping but distinct resistance profiles in Escherichia coli. Collectively, these data provide a more secure and systematic basis for classification of new aminoglycoside resistance methyltransferases from producers and pathogenic bacteria on the basis of their sequences and resistance profiles.
Journal of Biological Chemistry | 2008
Ahmed M. Wahid; Veronica K. Coventry; Graeme L. Conn
Adenoviruses use the short noncoding RNA transcript virus-associated (VA) RNAI to counteract two critical elements of the host cell defense system, innate cellular immunity and RNA interference, mediated by the double-stranded RNA-activated protein kinase (PKR) and Dicer/RNA-induced silencing complex, respectively. We progressively shortened the VA RNAI terminal stem to examine its necessity for inhibition of PKR. Each deletion, up to 15 bp into the terminal stem, resulted in a cumulative decrease in PKR inhibitory activity. Remarkably, however, despite significant apparent destabilization of the RNA structure, the final RNA mutant that lacked the entire terminal stem (TSΔ21 RNA) efficiently bound PKR and exhibited wild-type inhibitory activity. TSΔ21 RNA stability was strongly influenced by solution pH, indicating the involvement of a protonated base within the VA RNAI central domain tertiary structure. Gel filtration chromatography and isothermal titration calorimetry analysis indicated that wild-type VA RNAI and TSΔ21 RNA form similar 1:1 complexes with PKR but that the latter lacks secondary binding site(s) that might be provided by the terminal stem. Although TSΔ21 RNA bound PKR with wild-type Kd, and overall change in free energy (ΔG), the thermodynamics of binding (ΔH and ΔS) were significantly altered. These results demonstrate that the VA RNAI terminal stem is entirely dispensable for inhibition of PKR. Potentially, VA RNAI is therefore a truly bi-functional RNA; Dicer processing of the VA RNAI terminal stem saturates the RNA interference system while generating a “mini-VA RNAI” molecule that remains fully active against PKR.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Jack A. Dunkle; Kellie Vinal; Pooja M. Desai; Natalia Zelinskaya; Miloje Savic; Dayne M. West; Graeme L. Conn; Christine M. Dunham
Significance Increasing global spread of antibiotic resistance among pathogenic bacteria threatens a postantibiotic era in healthcare. Detailed studies of resistance mechanisms are therefore urgently required. The ribosome is a major antibiotic target, but bacteria can acquire resistance by modification of drug-binding sites. Here, we describe, to our knowledge, the first molecular snapshot of bacterial ribosome recognition by a pathogen-derived, aminoglycoside-resistance rRNA methyltransferase. Our results support a model in which initial rigid docking on a highly conserved ribosome tertiary surface drives conformational changes in the enzyme that capture the target base within a remodeled active site. Extreme conservation of the ribosome-docking surface suggests there is no impediment to the spread of this resistance activity but also presents a target for specific inhibitor development. Aminoglycosides are potent, broad spectrum, ribosome-targeting antibacterials whose clinical efficacy is seriously threatened by multiple resistance mechanisms. Here, we report the structural basis for 30S recognition by the novel plasmid-mediated aminoglycoside-resistance rRNA methyltransferase A (NpmA). These studies are supported by biochemical and functional assays that define the molecular features necessary for NpmA to catalyze m1A1408 modification and confer resistance. The requirement for the mature 30S as a substrate for NpmA is clearly explained by its recognition of four disparate 16S rRNA helices brought into proximity by 30S assembly. Our structure captures a “precatalytic state” in which multiple structural reorganizations orient functionally critical residues to flip A1408 from helix 44 and position it precisely in a remodeled active site for methylation. Our findings provide a new molecular framework for the activity of aminoglycoside-resistance rRNA methyltransferases that may serve as a functional paradigm for other modification enzymes acting late in 30S biogenesis.
Nucleic Acids Research | 2010
Rachel Macmaster; Natalia Zelinskaya; Miloje Savic; C. Robert Rankin; Graeme L. Conn
X-ray crystal structures were determined of the broad-spectrum aminoglycoside-resistance A1408 16S rRNA methyltransferases KamB and NpmA, from the aminoglycoside-producer Streptoalloteichus tenebrarius and human pathogenic Escherichia coli, respectively. Consistent with their common function, both are Class I methyltransferases with additional highly conserved structural motifs that embellish the core SAM-binding fold. In overall structure, the A1408 rRNA methyltransferase were found to be most similar to a second family of Class I methyltransferases of distinct substrate specificity (m7G46 tRNA). Critical residues for A1408 rRNA methyltransferase activity were experimentally defined using protein mutagenesis and bacterial growth assays with kanamycin. Essential residues for SAM coenzyme binding and an extended protein surface that likely interacts with the 30S ribosomal subunit were thus revealed. The structures also suggest potential mechanisms of A1408 target nucleotide selection and positioning. We propose that a dynamic extended loop structure that is positioned adjacent to both the bound SAM and a functionally critical structural motif may mediate concerted conformational changes in rRNA and protein that underpin the specificity of target selection and activation of methyltransferase activity. These new structures provide important new insights that may provide a starting point for strategies to inhibit these emerging causes of pathogenic bacterial resistance to aminoglycosides.
Nucleic Acids Research | 2009
Ahmed M. Wahid; Veronica K. Coventry; Graeme L. Conn
VA RNAI is a non-coding adenoviral transcript that counteracts the host cell anti-viral defenses such as immune responses mediated via PKR. We investigated potential alternate secondary structure conformations within the PKR-binding domain of VA RNAI using site-directed mutagenesis, RNA UV-melting analysis and enzymatic RNA secondary structure probing. The latter data clearly indicated that the wild-type VA RNAI apical stem can adopt two different conformations and that it exists as a mixed population of these two structures. In contrast, in two sequence variants we designed to eliminate one of the possible structures, while leaving the other intact, each formed a unique secondary structure. This clarification of the apical stem pairing also suggests a small alteration to the apical stem–loop secondary structure. The relative ability of the two apical stem conformations to bind PKR and inhibit kinase activity was measured by isothermal titration calorimetry and PKR autophosphorylation inhibition assay. We found that the two sequence variants displayed markedly different activities, with one being a significantly poorer binder and inhibitor of PKR. Whether the presence of the VA RNAI conformation with reduced PKR inhibitory activity is directly beneficial to the virus in the cell for some other function requires further investigation.
Journal of Biological Chemistry | 2009
Mark S. Dunstan; Pei C. Hang; Natalia Zelinskaya; John F. Honek; Graeme L. Conn
The x-ray crystal structure of the thiostrepton resistance RNA methyltransferase (Tsr)·S-adenosyl-l-methionine (AdoMet) complex was determined at 2.45-Å resolution. Tsr is definitively confirmed as a Class IV methyltransferase of the SpoU family with an N-terminal “L30-like” putative target recognition domain. The structure and our in vitro analysis of the interaction of Tsr with its target domain from 23 S ribosomal RNA (rRNA) demonstrate that the active biological unit is a Tsr homodimer. In vitro methylation assays show that Tsr activity is optimal against a 29-nucleotide hairpin rRNA though the full 58-nucleotide L11-binding domain and intact 23 S rRNA are also effective substrates. Molecular docking experiments predict that Tsr·rRNA binding is dictated entirely by the sequence and structure of the rRNA hairpin containing the A1067 target nucleotide and is most likely driven primarily by large complementary electrostatic surfaces. One L30-like domain is predicted to bind the target loop and the other is near an internal loop more distant from the target site where a nucleotide change (U1061 to A) also decreases methylation by Tsr. Furthermore, a predicted interaction with this internal loop by Tsr amino acid Phe-88 was confirmed by mutagenesis and RNA binding experiments. We therefore propose that Tsr achieves its absolute target specificity using the N-terminal domains of each monomer in combination to recognize the two distinct structural elements of the target rRNA hairpin such that both Tsr subunits contribute directly to the positioning of the target nucleotide on the enzyme.
Nucleic Acids Research | 2008
Veronica K. Coventry; Graeme L. Conn
Adenovirus VA RNAs are short non-coding transcripts that assist in maintaining viral protein expression in infected cells. Six sets of mismatch and compensatory base pair mutants of VA RNAI were examined by gel mobility and RNA UV melting to assess the contribution of each structural domain to its overall structure and stability. Each domain of VA RNAI was first assigned to one of two apparent unfolding transitions in the wild-type melting profile. The Terminal Stem and Central Domain unfold in a single cooperative apparent transition with an apparent Tm of ∼60°C. In contrast, the Apical Stem unfolds independently and with much higher apparent Tm of ∼83°C. Remarkably, this domain appears to behave as an almost entirely autonomous unit within the RNA, mirroring the functional division within the RNA between PKR binding and inhibition. The effects of mismatch and compensatory mutations at five of the six sites on the RNA melting profile are consistent with proposed base pairing and provide further validation of the current secondary structure model. Mutations in the Central Domain were tested in PKR inhibition assays and a component of the VA RNAI Central Domain structure essential for PKR inhibitory activity was identified.