Graham Byrnes
International Agency for Research on Cancer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Graham Byrnes.
BMJ | 2013
John D. Mathews; Anna V. Forsythe; Zoe Brady; Martin W Butler; Stacy K Goergen; Graham Byrnes; Graham G. Giles; Anthony Wallace; Philip R Anderson; Tenniel Guiver; Paul McGale; Timothy M. Cain; James G. Dowty; Adrian Bickerstaffe; Sarah C. Darby
Objective To assess the cancer risk in children and adolescents following exposure to low dose ionising radiation from diagnostic computed tomography (CT) scans. Design Population based, cohort, data linkage study in Australia. Cohort members 10.9 million people identified from Australian Medicare records, aged 0-19 years on 1 January 1985 or born between 1 January 1985 and 31 December 2005; all exposures to CT scans funded by Medicare during 1985-2005 were identified for this cohort. Cancers diagnosed in cohort members up to 31 December 2007 were obtained through linkage to national cancer records. Main outcome Cancer incidence rates in individuals exposed to a CT scan more than one year before any cancer diagnosis, compared with cancer incidence rates in unexposed individuals. Results 60 674 cancers were recorded, including 3150 in 680 211 people exposed to a CT scan at least one year before any cancer diagnosis. The mean duration of follow-up after exposure was 9.5 years. Overall cancer incidence was 24% greater for exposed than for unexposed people, after accounting for age, sex, and year of birth (incidence rate ratio (IRR) 1.24 (95% confidence interval 1.20 to 1.29); P<0.001). We saw a dose-response relation, and the IRR increased by 0.16 (0.13 to 0.19) for each additional CT scan. The IRR was greater after exposure at younger ages (P<0.001 for trend). At 1-4, 5-9, 10-14, and 15 or more years since first exposure, IRRs were 1.35 (1.25 to 1.45), 1.25 (1.17 to 1.34), 1.14 (1.06 to 1.22), and 1.24 (1.14 to 1.34), respectively. The IRR increased significantly for many types of solid cancer (digestive organs, melanoma, soft tissue, female genital, urinary tract, brain, and thyroid); leukaemia, myelodysplasia, and some other lymphoid cancers. There was an excess of 608 cancers in people exposed to CT scans (147 brain, 356 other solid, 48 leukaemia or myelodysplasia, and 57 other lymphoid). The absolute excess incidence rate for all cancers combined was 9.38 per 100 000 person years at risk, as of 31 December 2007. The average effective radiation dose per scan was estimated as 4.5 mSv. Conclusions The increased incidence of cancer after CT scan exposure in this cohort was mostly due to irradiation. Because the cancer excess was still continuing at the end of follow-up, the eventual lifetime risk from CT scans cannot yet be determined. Radiation doses from contemporary CT scans are likely to be lower than those in 1985-2005, but some increase in cancer risk is still likely from current scans. Future CT scans should be limited to situations where there is a definite clinical indication, with every scan optimised to provide a diagnostic CT image at the lowest possible radiation dose.
Lancet Neurology | 2008
Stephen M. Davis; Geoffrey A. Donnan; Mark W. Parsons; Christopher Levi; Kenneth Butcher; André Peeters; P. Alan Barber; Christopher F. Bladin; Deidre A. De Silva; Graham Byrnes; J. Chalk; John N. Fink; Thomas E. Kimber; David Schultz; Peter J. Hand; Judith Frayne; Graeme J. Hankey; Keith W. Muir; Richard P. Gerraty; Brian M. Tress; Patricia Desmond
BACKGROUND Whether intravenous tissue plasminogen activator (alteplase) is effective beyond 3 h after onset of acute ischaemic stroke is unclear. We aimed to test whether alteplase given 3-6 h after stroke onset promotes reperfusion and attenuates infarct growth in patients who have a mismatch in perfusion-weighted MRI (PWI) and diffusion-weighted MRI (DWI). METHODS We prospectively and randomly assigned 101 patients to receive alteplase or placebo 3-6 h after onset of ischaemic stroke. PWI and DWI were done before and 3-5 days after therapy, with T2-weighted MRI at around day 90. The primary endpoint was infarct growth between baseline DWI and the day 90 T2 lesion in mismatch patients. Major secondary endpoints were reperfusion, good neurological outcome, and good functional outcome. Patients, caregivers, and investigators were unaware of treatment allocations. Primary analysis was per protocol. This study is registered with ClinicalTrials.gov, number NCT00238537. FINDINGS We randomly assigned 52 patients to alteplase and 49 patients to placebo. Mean age was 71.6 years, and median score on the National Institutes of Health stroke scale was 13. 85 of 99 (86%) patients had mismatch of PWI and DWI. The geometric mean infarct growth (exponential of the mean log of relative growth) was 1.24 with alteplase and 1.78 with placebo (ratio 0.69, 95% CI 0.38-1.28; Students t test p=0.239); the median relative infarct growth was 1.18 with alteplase and 1.79 with placebo (ratio 0.66, 0.36-0.92; Wilcoxons test p=0.054). Reperfusion was more common with alteplase than with placebo and was associated with less infarct growth (p=0.001), better neurological outcome (p<0.0001), and better functional outcome (p=0.010) than was no reperfusion. INTERPRETATION Alteplase was non-significantly associated with lower infarct growth and significantly associated with increased reperfusion in patients who had mismatch. Because reperfusion was associated with improved clinical outcomes, phase III trials beyond 3 h after treatment are warranted.
Nature Genetics | 2008
James D. McKay; Rayjean J. Hung; Valerie Gaborieau; Paolo Boffetta; Amelie Chabrier; Graham Byrnes; David Zaridze; Anush Mukeria; Neonilia Szeszenia-Dabrowska; Jolanta Lissowska; Peter Rudnai; Eleonora Fabianova; Dana Mates; Vladimir Bencko; Lenka Foretova; Vladimir Janout; John R. McLaughlin; Frances A. Shepherd; Alexandre Montpetit; Steven A. Narod; Hans E. Krokan; Frank Skorpen; Maiken Bratt Elvestad; Lars J. Vatten; Inger Njølstad; Tomas Axelsson; Chu Chen; Gary E. Goodman; Matt J. Barnett; Melissa M. Loomis
We carried out a genome-wide association study of lung cancer (3,259 cases and 4,159 controls), followed by replication in 2,899 cases and 5,573 controls. Two uncorrelated disease markers at 5p15.33, rs402710 and rs2736100 were detected by the genome-wide data (P = 2 × 10−7 and P = 4 × 10−6) and replicated by the independent study series (P = 7 × 10−5 and P = 0.016). The susceptibility region contains two genes, TERT and CLPTM1L, suggesting that one or both may have a role in lung cancer etiology.
Annals of Neurology | 2002
Mark W. Parsons; P. Alan Barber; Patricia Desmond; Tracey Baird; David Darby; Graham Byrnes; Brian M. Tress; Stephen M. Davis
Controversy exists whether acute hyperglycemia is causally associated with worse stroke outcome or simply reflects a more severe stroke. In reversible ischemia models, hyperglycemia is associated with lactic acidosis and conversion of penumbral tissue to infarction. However, the relationship between hyperglycemia, lactic acidosis, and stroke outcome has not been explored in humans. Sixty‐three acute stroke patients were prospectively evaluated with serial diffusion‐weighted and perfusion‐weighted magnetic resonance imaging and acute blood glucose measurements. Patients with hypoperfused at‐risk tissue were identified by acute perfusion‐diffusion lesion mismatch. As a substudy, acute and subacute magnetic resonance spectroscopy was performed in the 33 most recent patients to assess the relationship between acute blood glucose and lactate production in the ischemic region. In 40 of 63 patients with acute perfusion‐diffusion mismatch, acute hyperglycemia was correlated with reduced salvage of mismatch tissue from infarction, greater final infarct size, and worse functional outcome. These correlations were independent of baseline stroke severity, lesion size, and diabetic status. Furthermore, higher acute blood glucose in patients with perfusion‐diffusion mismatch was associated with greater acute‐subacute lactate production, which, in turn, was independently associated with reduced salvage of mismatch tissue. In contrast, acute blood glucose levels in nonmismatch patients did not independently correlate with outcome measures, nor was there any acute‐subacute increase in lactate in this group. Acute hyperglycemia increases brain lactate production and facilitates conversion of hypoperfused at‐risk tissue into infarction, which may adversely affect stroke outcome. These findings support the need for randomized controlled trials of aggressive glycemic control in acute stroke.
International Journal of Cancer | 2011
Sara Gandini; Mathieu Boniol; Jari Haukka; Graham Byrnes; Brian Cox; Mary Jane Sneyd; Patrick Mullie; Philippe Autier
Epidemiological studies have suggested a reduced risk of several cancers associated with high vitamin D status. We performed a systematic review with meta‐analyses of observational studies of serum 25‐hydroxyvitamin D level and colorectal, breast and prostate cancer and colonic adenoma. The literature of December 2009 was searched without language restriction. The meta‐regression analysis was done to compute dose‐response effects. Because in case‐control studies, serum 25‐hydroxyvitamin D level is measured after the diagnosis of cancer, separate analyses for case‐control and prospective studies were done. We identified 35 independent studies. The seven studies on colorectal adenomas were heterogeneous in terms of endpoint and control for major confounding factors, and we did not perform a meta‐analysis of these data. The summary relative risk (SRR) and (95% confidence interval) for a 10 ng/ml increase in serum 25‐hydroxyvitamin D was 0.85 (0.79; 0.91) for colorectal cancer (2,630 cases in 9 studies); 0.89 (0.81;0.98) for breast cancer (6,175 cases in 10 studies); and 0.99 (0.95;1.03) for prostate cancer (3,956 cases in 11 studies). For breast cancer, case‐control studies (3,030 cases) had major limitations and obtained SRR of 0.83 (0.79; 0.87) whereas SRR of prospective studies (3,145 cases) was 0.97 (0.92; 1.03). For colorectal and breast cancer, differences between cases and controls in the season of blood draw or in overweight/obesity or physical inactivity could not explain the results. In conclusion, a consistent inverse relationship between serum 25‐hydroxyvitamin D levels and colorectal cancer was found. No association was found for breast and prostate cancer.
BMJ | 2010
Mazda Jenab; H. Bas Bueno-de-Mesquita; Pietro Ferrari; Fränzel J.B. Van Duijnhoven; Teresa Norat; Tobias Pischon; Eugene Jansen; Nadia Slimani; Graham Byrnes; Sabina Rinaldi; Anne Tjønneland; Anja Olsen; Kim Overvad; Marie Christine Boutron-Ruault; Françoise Clavel-Chapelon; Sophie Morois; Rudolf Kaaks; Jakob Linseisen; Heiner Boeing; M. Bergmann; Antonia Trichopoulou; Gesthimani Misirli; Dimitrios Trichopoulos; Franco Berrino; Paolo Vineis; Salvatore Panico; Domenico Palli; Rosario Tumino; Martine M. Ros; Carla H. van Gils
Objective To examine the association between pre-diagnostic circulating vitamin D concentration, dietary intake of vitamin D and calcium, and the risk of colorectal cancer in European populations. Design Nested case-control study. Setting The study was conducted within the EPIC study, a cohort of more than 520 000 participants from 10 western European countries. Participants 1248 cases of incident colorectal cancer, which developed after enrolment into the cohort, were matched to 1248 controls Main outcome measures Circulating vitamin D concentration (25-hydroxy-vitamin-D, 25-(OH)D) was measured by enzyme immunoassay. Dietary and lifestyle data were obtained from questionnaires. Incidence rate ratios and 95% confidence intervals for the risk of colorectal cancer by 25-(OH)D concentration and levels of dietary calcium and vitamin D intake were estimated from multivariate conditional logistic regression models, with adjustment for potential dietary and other confounders. Results 25-(OH)D concentration showed a strong inverse linear dose-response association with risk of colorectal cancer (P for trend <0.001). Compared with a pre-defined mid-level concentration of 25-(OH)D (50.0-75.0 nmol/l), lower levels were associated with higher colorectal cancer risk (<25.0 nmol/l: incidence rate ratio 1.32 (95% confidence interval 0.87 to 2.01); 25.0-49.9 nmol/l: 1.28 (1.05 to 1.56), and higher concentrations associated with lower risk (75.0-99.9 nmol/l: 0.88 (0.68 to 1.13); ≥100.0 nmol/l: 0.77 (0.56 to 1.06)). In analyses by quintile of 25-(OH)D concentration, patients in the highest quintile had a 40% lower risk of colorectal cancer than did those in the lowest quintile (P<0.001). Subgroup analyses showed a strong association for colon but not rectal cancer (P for heterogeneity=0.048). Greater dietary intake of calcium was associated with a lower colorectal cancer risk. Dietary vitamin D was not associated with disease risk. Findings did not vary by sex and were not altered by corrections for season or month of blood donation. Conclusions The results of this large observational study indicate a strong inverse association between levels of pre-diagnostic 25-(OH)D concentration and risk of colorectal cancer in western European populations. Further randomised trials are needed to assess whether increases in circulating 25-(OH)D concentration can effectively decrease the risk of colorectal cancer.
Lancet Oncology | 2015
Melina Arnold; Nirmala Pandeya; Graham Byrnes; Andrew G. Renehan; Gretchen A Stevens; Majid Ezzati; Jacques Ferlay; J. Jaime Miranda; Isabelle Romieu; Rajesh Dikshit; David Forman; Isabelle Soerjomataram
BACKGROUND High body-mass index (BMI; defined as 25 kg/m(2) or greater) is associated with increased risk of cancer. To inform public health policy and future research, we estimated the global burden of cancer attributable to high BMI in 2012. METHODS In this population-based study, we derived population attributable fractions (PAFs) using relative risks and BMI estimates in adults by age, sex, and country. Assuming a 10-year lag-period between high BMI and cancer occurrence, we calculated PAFs using BMI estimates from 2002 and used GLOBOCAN2012 data to estimate numbers of new cancer cases attributable to high BMI. We also calculated the proportion of cancers that were potentially avoidable had populations maintained their mean BMIs recorded in 1982. We did secondary analyses to test the model and to estimate the effects of hormone replacement therapy (HRT) use and smoking. FINDINGS Worldwide, we estimate that 481,000 or 3.6% of all new cancer cases in adults (aged 30 years and older after the 10-year lag period) in 2012 were attributable to high BMI. PAFs were greater in women than in men (5.4% vs 1.9%). The burden of attributable cases was higher in countries with very high and high human development indices (HDIs; PAF 5.3% and 4.8%, respectively) than in those with moderate (1.6%) and low HDIs (1.0%). Corpus uteri, postmenopausal breast, and colon cancers accounted for 63.6% of cancers attributable to high BMI. A quarter (about 118,000) of the cancer cases related to high BMI in 2012 could be attributed to the increase in BMI since 1982. INTERPRETATION These findings emphasise the need for a global effort to abate the increasing numbers of people with high BMI. Assuming that the association between high BMI and cancer is causal, the continuation of current patterns of population weight gain will lead to continuing increases in the future burden of cancer. FUNDING World Cancer Research Fund International, European Commission (Marie Curie Intra-European Fellowship), Australian National Health and Medical Research Council, and US National Institutes of Health.
Diabetologia | 2004
Spiros Fourlanos; P. Narendran; Graham Byrnes; Peter G. Colman; Leonard C. Harrison
Aims/hypothesisGlucose homeostasis is determined by an interplay between insulin secretion and insulin action. In Type 1 diabetes, autoimmune destruction of pancreatic beta cells leads to impaired insulin secretion. However, the contribution of impaired insulin action (insulin resistance) to the development of Type 1 diabetes has received little attention. We investigated whether insulin resistance was a risk factor for progression to Type 1 diabetes.MethodsIslet-antibody-positive first-degree relatives of Type 1 diabetes probands were followed for 4.0 years (median). Insulin secretion was measured as first-phase insulin response (FPIR) to intravenous glucose. Insulin resistance was estimated by homeostasis model assessment of insulin resistance (HOMA-R). We compared subjects who progressed (n=43) and subjects who did not progress (n=61) to diabetes, including 21 pairs matched for age, sex, islet antibodies and FPIR.ResultsProgressors had higher insulin resistance relative to insulin secretion at baseline (median HOMA-R : FPIR 0.033 vs 0.013, p<0.0001). According to Cox proportional hazards analysis, islet antibody number, FPIR, fasting plasma glucose, fasting serum insulin, HOMA-R and log(HOMA-R : FPIR) were each predictive of progression to diabetes. However, log(HOMA-R : FPIR) (hazard ratio 2.57 per doubling, p<0.001) was the only metabolic variable independently associated with progression. In the matched comparison, progressors had higher fasting glucose, fasting insulin, HOMA-R and HOMA-R : FPIR, both at baseline and during the follow-up pre-clinical phase.Conclusions/interpretationRelatives positive for islet antibodies who progress most rapidly to diabetes have a subtle disturbance of insulin–glucose homeostasis years before the onset of symptoms, distinguished by greater insulin resistance for their level of insulin secretion. Taking steps to reduce this insulin resistance could therefore delay the development of Type 1 diabetes.
Journal of Clinical Oncology | 2013
Aimée R. Kreimer; Mattias Johansson; Tim Waterboer; Rudolf Kaaks; Jenny Chang-Claude; Dagmar Drogen; Anne Tjønneland; Kim Overvad; J. Ramón Quirós; Carlos A. González; Maria José Sánchez; Nerea Larrañaga; Carmen Navarro; Aurelio Barricarte; Ruth C. Travis; Kay-Tee Khaw; Nicholas J. Wareham; Antonia Trichopoulou; Pagona Lagiou; Dimitrios Trichopoulos; Petra H.M. Peeters; Salvatore Panico; Giovanna Masala; Sara Grioni; Rosario Tumino; Paolo Vineis; H. Bas Bueno-de-Mesquita; Göran Laurell; Göran Hallmans; Jonas Manjer
PURPOSE Human papillomavirus type 16 (HPV16) infection is causing an increasing number of oropharyngeal cancers in the United States and Europe. The aim of our study was to investigate whether HPV antibodies are associated with head and neck cancer risk when measured in prediagnostic sera. METHODS We identified 638 participants with incident head and neck cancers (patients; 180 oral cancers, 135 oropharynx cancers, and 247 hypopharynx/larynx cancers) and 300 patients with esophageal cancers as well as 1,599 comparable controls from within the European Prospective Investigation Into Cancer and Nutrition cohort. Prediagnostic plasma samples from patients (collected, on average, 6 years before diagnosis) and control participants were analyzed for antibodies against multiple proteins of HPV16 as well as HPV6, HPV11, HPV18, HPV31, HPV33, HPV45, and HPV52. Odds ratios (ORs) of cancer and 95% CIs were calculated, adjusting for potential confounders. All-cause mortality was evaluated among patients using Cox proportional hazards regression. RESULTS HPV16 E6 seropositivity was present in prediagnostic samples for 34.8% of patients with oropharyngeal cancer and 0.6% of controls (OR, 274; 95% CI, 110 to 681) but was not associated with other cancer sites. The increased risk of oropharyngeal cancer among HPV16 E6 seropositive participants was independent of time between blood collection and diagnosis and was observed more than 10 years before diagnosis. The all-cause mortality ratio among patients with oropharyngeal cancer was 0.30 (95% CI, 0.13 to 0.67), for patients who were HPV16 E6 seropositive compared with seronegative. CONCLUSION HPV16 E6 seropositivity was present more than 10 years before diagnosis of oropharyngeal cancers.
Human Mutation | 2008
Sean V. Tavtigian; Marc S. Greenblatt; Fabienne Lesueur; Graham Byrnes
Genetic testing for mutations in high‐risk cancer susceptibility genes often reveals missense substitutions that are not easily classified as pathogenic or neutral. Among the methods that can help in their classification are computational analyses. Predictions of pathogenic vs. neutral, or the probability that a variant is pathogenic, can be made based on: 1) inferences from evolutionary conservation using protein multiple sequence alignments (PMSAs) of the gene of interest for almost any missense sequence variant; and 2) for many variants, structural features of wild‐type and variant proteins. These in silico methods have improved considerably in recent years. In this work, we review and/or make suggestions with respect to: 1) the rationale for using in silico methods to help predict the consequences of missense variants; 2) important aspects of creating PMSAs that are informative for classification; 3) specific features of algorithms that have been used for classification of clinically‐observed variants; 4) validation studies demonstrating that computational analyses can have predictive values (PVs) of ∼75 to 95%; 5) current limitations of data sets and algorithms that need to be addressed to improve the computational classifiers; and 6) how in silico algorithms can be a part of the “integrated analysis” of multiple lines of evidence to help classify variants. We conclude that carefully validated computational algorithms, in the context of other evidence, can be an important tool for classification of missense variants. Hum Mutat 29(11), 1327–1336, 2008.