Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graham D. Bonnett is active.

Publication


Featured researches published by Graham D. Bonnett.


Plant Molecular Biology Reporter | 2004

Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane

Hayati M. Iskandar; Robert S. Simpson; Rosanne E. Casu; Graham D. Bonnett; Donald J. Maclean; John M. Manners

A protocol for reverse transcription followed by real-time quantitative PCR (RT-qPCR) analysis of tissue-specific and genotype-variable gene expression in sugarcane (Saccharum sp.) was developed. A key requirement for this analysis was the identification of a housekeeping gene with transcript levels that were relatively stable across tissues and genotypes, suitable for use as a reference. Primers for β-actin, β-tubulin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes and 25S ribosomal RNA were designed and tested by RT-qPCR, and formation of product in the reactions was measured with the SYBR green I dye system. Ribosomal RNA was the most sensitive and consistent as a reference gene. Determination of the expression levels of β-actin, β-tubulin, and GAPDH transcripts relative to that of 25S rRNA showed that GAPDH had the most consistent mRNA expression of protein-coding genes across different tissues. GAPDH also showed low variation in expression in maturing stem internodes when compared across 2 cultivars and 3 otherSaccharum species. GAPDH therefore appears to be a suitable “housekeeping gene” in addition to 25S rRNA as a reference for measuring the relative expression of other genes in sugarcane. With use of GAPDH as a reference, the relative expression of the sugarcane sugar transporter genePst2a was assessed in a range of tissues. The result obtained was similar to our previously published Northern blot analysis. The protocol described here, using GAPDH as a reference gene, is recommended for studying the expression of other genes of interest in diverse tissues and genotypes of sugarcane.


In Vitro Cellular & Developmental Biology – Plant | 2005

Sugarcane biotechnology: The challenges and opportunities

Prakash Lakshmanan; R. Jason Geijskes; Karen S. Aitken; Christopher L. P. Grof; Graham D. Bonnett; G. R. Smith

SummaryCommercial sugarcane, belonging to the genus Saccharum (Poaceae), is an important industrial crop accounting for nearly 70% of sugar produced worldwide. Compared to other major crops, efforts to improve sugarcane are limited and relatively recent, with the first introduction of interspecific hybrids about 80 yr ago. Progress in traditional breeding of sugareane, a highly polyploid and frequently aneuploid plant, is impeded by its narrow gene pool, complex genome, poor fertility, and the long breeding/selection cycle. These constraints, however, make sugarcane a good candidate for molecular breeding. In the past decade considerable progress has been made in understanding and manipulating the sugarcane genome using various biotechnological and cell biological approaches. Notable among them are the creation of transgenic plants with improved agronomic or other important traits, advances in genomics and molecular markers, and progress in understanding the molecular aspects of sucrose transport and accumulation. More recently, substantial effort has been directed towards developing sugarcane as a biofactory for high-value products. While these achievements are commendable, a greater understanding of the sugarcane genome, and cell and whole plant physiology, will accelerate the implementation of commercially significant biotechnology outcomes. We anticipate that the rapid advancements in molecular biology and emerging biotechnology innovations would play a significant role in the future sugarcane crop improvement programs and offer many new opportunities to develop it as a new-generation industrial crop.


Plant Molecular Biology | 2004

Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling

Rosanne E. Casu; Christine M. Dimmock; Scott C. Chapman; Christopher P. L. Grof; C. Lynne McIntyre; Graham D. Bonnett; John M. Manners

Sugarcane accumulates high concentrations of sucrose in the mature stem and a number of physiological processes on-going in maturing stem tissue both directly and indirectly allow this process. To identify transcripts that are associated with stem maturation, we compared patterns of gene expression in maturing and immature stem tissue by expression profiling and bioinformatic analysis of sets of stem ESTs. This study complements a previous study of gene expression associated directly with sugar metabolism in sugarcane. A survey of sequences derived from stem tissue identified an abundance of several classes of sequence that are associated with fibre biosynthesis in the maturing stem. A combination of EST analyses and microarray hybridization revealed that genes encoding homologues of the dirigent protein, a protein that assists in the stereospecificity of lignin assembly, were the most abundant and most strongly differentially expressed transcripts in maturing stem tissue. There was also evidence of coordinated expression of other categories of fibre biosynthesis and putative defence- and stress-related transcripts in the maturing stem. This study has demonstrated the utility of genomic approaches using large-scale EST acquisition and microarray hybridization techniques to highlight the very significant transcriptional investment the maturing stem of sugarcane has placed in fibre biosynthesis and stress tolerance, in addition to its already well-documented role in sugar accumulation.


Functional & Integrative Genomics | 2007

Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling

Rosanne E. Casu; Janine M. Jarmey; Graham D. Bonnett; John M. Manners

Sugarcane is an important crop in tropical regions of the world, producing a very large biomass and accumulating large amounts of sucrose in the stem. In this study, we present the first report of transcript profiling using the GeneChip Sugarcane Genome Array. We have identified transcripts that are differentially expressed in the sugarcane stem during development by expression profiling using the array and total RNA derived from three disparate stem tissues (meristem, internodes 1–3, 8, and 20) from four replicates of the sugarcane variety Q117 grown in the field. We have identified 119 transcripts that were highly differentially expressed with development and have characterised members of the cellulose synthase (CesA) and cellulose synthase-like (Csl) gene families, which displayed coordinated expression during stem development. In addition, we determined that many other transcripts involved in cell wall metabolism and lignification were also co-expressed with members of the CesA and Csl gene families, offering additional insights into the dynamics of primary and secondary cell wall synthesis in the developing sugarcane stem.


Planta | 2009

Efficient silencing of reporter transgenes coupled to known functional promoters in sugarcane, a highly polyploid crop species.

Stephen R. Mudge; Kenji Osabe; Rosanne E. Casu; Graham D. Bonnett; John M. Manners; Robert G. Birch

Sugarcane is a crop of great interest for engineering of sustainable biomaterials and biofuel production. Isolated sugarcane promoters have generally not maintained the expected patterns of reporter transgene expression. This could arise from defective promoters on redundant alleles in the highly polyploid genome, or from efficient transgene silencing. To resolve this question we undertook detailed analysis of a sugarcane gene that combines a simple pattern in genomic Southern hybridization analysis with potentially useful, sink-specific, expression. Sequence analysis indicates that this gene encodes a member of the SHAQYF subfamily of MYB transcription factors. At least eight alleles were revealed by PCR analysis in sugarcane cultivar Q117 and a similar level of heterozygosity was seen in BAC clones from cultivar Q200. Eight distinct promoter sequences were isolated from Q117, of which at least three are associated with expressed alleles. All of the isolated promoter variants were tested for ability to drive reporter gene expression in sugarcane. Most were functional soon after transfer, but none drove reporter activity in mature stems of regenerated plants. These results show that the ineffectiveness of previously tested sugarcane promoters is not simply due to the isolation of non-functional promoter copies from the polyploid genome. If the unpredictable onset of silencing observed in most other plant species is associated with developmental polyploidy, approaches that avoid efficient transgene silencing in polyploid sugarcane are likely to have much wider utility in molecular improvement.


BMC Plant Biology | 2011

Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms

Hayati M. Iskandar; Rosanne E. Casu; Andrew Fletcher; Susanne Schmidt; Jingsheng Xu; Donald J. Maclean; John M. Manners; Graham D. Bonnett

BackgroundThe ability of sugarcane to accumulate high concentrations of sucrose in its culm requires adaptation to maintain cellular function under the high solute load. We have investigated the expression of 51 genes implicated in abiotic stress to determine their expression in the context of sucrose accumulation by studying mature and immature culm internodes of a high sucrose accumulating sugarcane cultivar. Using a sub-set of eight genes, expression was examined in mature internode tissues of sugarcane cultivars as well as ancestral and more widely related species with a range of sucrose contents. Expression of these genes was also analysed in internode tissue from a high sucrose cultivar undergoing water deficit stress to compare effects of sucrose accumulation and water deficit.ResultsA sub-set of stress-related genes that are potentially associated with sucrose accumulation in sugarcane culms was identified through correlation analysis, and these included genes encoding enzymes involved in amino acid metabolism, a sugar transporter and a transcription factor. Subsequent analysis of the expression of these stress-response genes in sugarcane plants that were under water deficit stress revealed a different transcriptional profile to that which correlated with sucrose accumulation. For example, genes with homology to late embryogenesis abundant-related proteins and dehydrin were strongly induced under water deficit but this did not correlate with sucrose content. The expression of genes encoding proline biosynthesis was associated with both sucrose accumulation and water deficit, but amino acid analysis indicated that proline was negatively correlated with sucrose concentration, and whilst total amino acid concentrations increased about seven-fold under water deficit, the relatively low concentration of proline suggested that it had no osmoprotectant role in sugarcane culms.ConclusionsThe results show that while there was a change in stress-related gene expression associated with sucrose accumulation, different mechanisms are responding to the stress induced by water deficit, because different genes had altered expression under water deficit.


Crop & Pasture Science | 2005

Effects of tissue culture, biolistic transformation, and introduction of PPO and SPS gene constructs on performance of sugarcane clones in the field

J. E. Vickers; Christopher P. L. Grof; Graham D. Bonnett; Phillip Jackson; Terry Morgan

Stably transformed sugarcane plants were produced by the biolistic introduction of DNA into tissue-cultured cells. Constructs containing genes in sense and antisense orientation of polyphenol oxidase and sense orientation of sucrose phosphate synthase were used in the transformations. Regenerated plants were grown in a series of field experiments that incorporated commercial varieties, including Q117, from which the transgenic clones were derived and plants regenerated from tissue culture but not subjected to biolistic bombardment. In all experiments, the mean yield of transgenic sugarcane was lower than commercial varieties and the transgenic clones often exhibited lower sugar content, although individual transgenic clones in some experiments were not significantly different from Q117. Those plants regenerated from tissue culture but not bombarded were intermediate in their yield, and more clones were equivalent to Q117 in agronomic performance. Transformed plants produced by the bombardment of callus performed poorly but the results from the tissue-cultured controls indicated that not all of this could be due to somaclonal variation. Some aspect(s) of the process of transformation itself was deleterious and in most cases more significant than the effects due to tissue culture. Of the transgenic clones grown at Ayr, Queensland, 1.6% were equivalent to Q117 in sugar content and yield, suggesting that large numbers of transgenic clones would have to be generated using the current method in order to allow for selection of clones with acceptable agronomic performance.


Crop & Pasture Science | 2009

Source–sink differences in genotypes and water regimes influencing sucrose accumulation in sugarcane stalks

N.G. Inman-Bamber; Graham D. Bonnett; M. F. Spillman; M. L. Hewitt; Jingsheng Xu

Relatively little is known about the physiological basis for variation in sucrose content among sugarcane clones despite substantial research at the molecular and biochemical levels. We used irrigation and continuous monitoring of photosynthesis and plant extension rate to modify dry matter partitioning in four clones differing widely in sucrose content. Three pot experiments were conducted on two low sucrose content clones, KQ97-2599 and KQ97-2835, and two high sucrose content clones, Q117 and KQ97-5080, in a temperature-controlled glasshouse. As expected, sucrose content on a dry mass basis of whole stalks was greater in high (55% maximum) than in low sucrose clones (40% maximum), but sucrose content in the two clones selected for low sucrose reached 55% in some internodes. Differences between clones in whole-plant net photosynthesis and aerial biomass accumulation were small. However, biomass was distributed over fewer stalks in the high sucrose clones (4–7 stalks per pot) than in the low sucrose clones (9–11 stalks per pot). The high sucrose clones also allocated a considerably greater proportion of dry matter to the stalk (70% maximum) than the low sucrose clones (60% maximum). It is suggested that the relatively large amount of new leaf tissue produced by the high tillering, low sucrose clones placed an additional demand for structural photo-assimilate in these clones and delayed the accumulation of sucrose in the stalk. The results indicated that there is little direct genetic control on the maximum amount of sucrose that can accumulate in stalk tissue and that genetic contrasts in sucrose content reside more in the morphology of the plant and responses to ripening stimuli such as mild water stress, and how these traits influence supply and demand for photo-assimilate.


Crop & Pasture Science | 2006

Effects of high temperature on the growth and composition of sugarcane internodes

Graham D. Bonnett; M. L. Hewitt; D. Glassop

Sugarcane grown in the Ord River district of Western Australia has lower sucrose content than expected from earlier trials and experience in other irrigated districts. High temperatures have been hypothesised as a possible cause. The effects of high temperature (above 32 degrees C) on growth and carbon partitioning were investigated. A temperature regime of (25-38 degrees C) was compared with (23-33 degrees C). In one experiment, 7-month-old plants of cvv. Q117 and Q158 were subjected to the treatments for 2 months. In another experiment, the plants were allowed to regrow (ratoon) for 6 months. In both experiments, the higher temperature resulted in more, shorter internodes and higher moisture content. Most internodes from plants in the higher temperature treatment had lower sucrose content than internodes from the lower temperature. On a dry mass basis the internodes from the plants in the higher temperature had proportionately more fibre and hexoses but lower sucrose. Combined with an increased number of nodes in a stem of similar or shorter length this would result in higher stalk fibre and lower sucrose content. The data provided evidence that sugarcane partitions less carbon to stored sucrose when grown under high compared with low temperatures. The two cultivars partitioned carbon between soluble (sugars) and insoluble (fibre) fractions to different degrees. These experiments also indicate that the current models describing leaf appearance and perhaps sugarcane growth at temperatures above 32 degrees C, in general, need revision.


Functional Plant Biology | 2006

The Five Families of Sucrose-Phosphate Synthase Genes in Saccharum spp. are Differentially Expressed in Leaves and Stem

Christopher P. L. Grof; C. T. E. So; Jai M. Perroux; Graham D. Bonnett; Robert Forrester

Sucrose-phosphate synthase (SPS) is a key enzyme in the pathway of sucrose synthesis. Five different gene families encoding SPS have been reported in the Poaceae [Castleden CK, Aoki N, Gillespie VJ, MacRae EA, Quick WP, Buchner P, Foyer CH, Furbank RT, Lunn JE (2004) Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiology 135, 1753-1764]. Expression of the five families in leaf and stem tissues of Saccharum spp. at different stages of development was determined by quantitative real-time PCR. The type B and C families of SPS genes were predominantly expressed in both immature and mature leaves, whereas the two subfamilies making up the type D family were expressed at similar levels in all tissues examined. In the type A family, expression was lowest in leaves and increased from the meristem region down to internode 7 of the stem.

Collaboration


Dive into the Graham D. Bonnett's collaboration.

Top Co-Authors

Avatar

Rosanne E. Casu

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Anne L. Rae

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

John M. Manners

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Simpson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Donna Glassop

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Karen S. Aitken

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Phillip Jackson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge