Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donna Glassop is active.

Publication


Featured researches published by Donna Glassop.


Plant and Soil | 2003

Phosphate transport in plants

Frank W. Smith; Stephen R. Mudge; Anne L. Rae; Donna Glassop

Transport of inorganic phosphate (Pi) through plant membranes is mediated by a number of families of transporter proteins. Studies on the topology, function, regulation and sites of expression of the genes that encode the members of these transporter families are enabling roles to be ascribed to each of them. The Pht1 family, of which there are nine members in the Arabidopsis genome, includes proteins involved in the uptake of Pi from the soil solution and the redistribution of Pi within the plant. Members of this family are H2PO4−/H+ symporters. Most of the genes of the Pht1 family that are expressed in roots are up-regulated in P-stressed plants. Two members of the Pht1 family have been isolated from the cluster roots of white lupin. These same genes are expressed in non-cluster roots. The evidence available to date suggests that there are no major differences between the types of transport systems that cluster roots and non-cluster roots use to acquire Pi. Differences in uptake rates between cluster and non-cluster roots can be ascribed to more high-affinity Pi transporters in the plasma membranes of cluster roots, rather than any difference in the characteristics of the transporters. The efficient acquisition of Pi by cluster roots arises primarily from their capacity to increase the availability of soil Pi immediately adjacent to the rootlets by excretion of carboxylates, protons and phosphatases within the cluster. This paper reviews Pi transport processes, concentrating on those mediated by the Pht1 family of transporters, and attempts to relate those processes involved in Pi acquisition to likely Pi transport processes in cluster roots.


Planta | 2005

Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots

Donna Glassop; Sally E. Smith; Frank W. Smith

A very large number of plant species are capable of forming symbiotic associations with arbuscular mycorrhizal (AM) fungi. The roots of these plants are potentially capable of absorbing P from the soil solution both directly through root epidermis and root hairs, and via the AM fungal pathway that delivers P to the root cortex. A large number of phosphate (P) transporters have been identified in plants; tissue expression patterns and kinetic information supports the roles of some of these in the direct root uptake pathways. Recent work has identified additional P transporters in several unrelated species that are strongly induced, sometimes specifically, in AM roots. The primary aim of the work described in this paper was to determine how mycorrhizal colonisation by different species of AM fungi influenced the expression of members of the Pht1 gene families in the cereals Hordeum vulgare (barley), Triticum aestivum (wheat) and Zea mays (maize). RT-PCR and in-situ hybridisation, showed that the transporters HORvu;Pht1;8 (AY187023), TRIae;Pht1;myc (AJ830009) and ZEAma;Pht1;6 (AJ830010), had increased expression in roots colonised by the AM fungi Glomus intraradices,Glomus sp. WFVAM23 and Scutellospora calospora. These findings add to the increasing body of evidence indicating that plants that form AM associations with members of the Glomeromycota have evolved phosphate transporters that are either specifically or preferentially involved in scavenging phosphate from the apoplast between intracellular AM structures and root cortical cells. Operation of mycorrhiza-inducible P transporters in the AM P uptake pathway appears, at least partially, to replace uptake via different P transporters located in root epidermis and root hairs.


Plant Physiology | 2007

Molecular Dissection of Variation in Carbohydrate Metabolism Related to Water-Soluble Carbohydrate Accumulation in Stems of Wheat

Gang-Ping Xue; C. Lynne McIntyre; Colin L. D. Jenkins; Donna Glassop; Anthony F. van Herwaarden; Ray Shorter

Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencing grain weight and yield under water-limited environments. Here, we describe the molecular dissection of carbohydrate metabolism in stems, at the WSC accumulation phase, of recombinant inbred Seri/Babax lines of wheat differing in stem WSC concentrations. Affymetrix GeneChip analysis of carbohydrate metabolic enzymes revealed that the mRNA levels of two fructan synthetic enzyme families (Suc:Suc 1-fructosyltransferase and Suc:fructan 6-fructosyltransferase) in the stem were positively correlated with stem WSC and fructan concentrations, whereas the mRNA levels of enzyme families involved in Suc hydrolysis (Suc synthase and soluble acid invertase) were inversely correlated with WSC concentrations. Differential regulation of the mRNA levels of these Suc hydrolytic enzymes in Seri/Babax lines resulted in genotypic differences in these enzyme activities. Down-regulation of Suc synthase and soluble acid invertase in high WSC lines was accompanied by significant decreases in the mRNA levels of enzyme families related to sugar catabolic pathways (fructokinase and mitochondrion pyruvate dehydrogenase complex) and enzyme families involved in diverting UDP-Glc to cell wall synthesis (UDP-Glc 6-dehydrogenase, UDP-glucuronate decarboxylase, and cellulose synthase), resulting in a reduction in cell wall polysaccharide contents (mainly hemicellulose) in the stem of high WSC lines. These data suggest that differential carbon partitioning in the wheat stem is one mechanism that contributes to genotypic variation in WSC accumulation.


Plant Molecular Biology | 2008

Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress

Gang-Ping Xue; C. Lynne McIntyre; Donna Glassop; Ray Shorter

Water deficit in plants causes a reduction in photosynthesis and high demands for osmolyte synthesis. To elucidate regulation of carbohydrate metabolic genes in wheat (Triticum aestivum) leaves during drought stress, we performed a systematic expression study using quantitative RT-PCR and cDNA microarray. These analyses revealed that expression levels of most genes encoding chloroplast enzymes involved in carbon fixation (Calvin cycle) were reduced in the leaves during prolonged drought stress. Transcript levels of highly expressed isoenzymes of hexokinase and fructokinase also decreased. Conversely, genes encoding cytoplasmic and vacuolar enzymes in the pathways leading to glucose, fructose and fructan production were up-regulated in the stressed leaves. Systematic expression analysis of an almost complete set of genes involved in conversion of triose phosphates to hexoses and hexose phosphorylation showed that isoenzymes of many enzymes were differentially regulated during drought stress. Correlation analysis indicated that the drought down-regulated Calvin cycle genes were coordinately regulated. This coordinated down-regulation extended to genes encoding major isoenzymes of chloroplast triose-phosphate/phosphate translocator, cytoplasmic fructose-1,6-bisphosphate aldolase and fructose bisphosphatase. Highly correlated expression was also observed between drought up-regulated genes involved in sucrose synthesis and hydrolysis or fructan synthesis. These data dissect coordination in regulation of key enzyme genes involved in carbon fixation and accumulation of hexoses and fructans and provide an insight into molecular mechanisms at the transcript level underlying changes in carbohydrate metabolism in wheat adaptation to drought stress.


Journal of Experimental Botany | 2013

TaMYB13-1, a R2R3 MYB transcription factor, regulates the fructan synthetic pathway and contributes to enhanced fructan accumulation in bread wheat

Maarten Kooiker; Janneke Drenth; Donna Glassop; C. Lynne McIntyre; Gang-Ping Xue

Fructans are the major component of temporary carbon reserve in the stem of temperate cereals, which is used for grain filling. Three families of fructosyltransferases are directly involved in fructan synthesis in the vacuole of Triticum aestivum. The regulatory network of the fructan synthetic pathway is largely unknown. Recently, a sucrose-upregulated wheat MYB transcription factor (TaMYB13-1) was shown to be capable of activating the promoter activities of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in transient transactivation assays. This work investigated TaMYB13-1 target genes and their influence on fructan synthesis in transgenic wheat. TaMYB13-1 overexpression resulted in upregulation of all three families of fructosyltransferases including fructan:fructan 1-fructosyltransferase (1-FFT). A γ-vacuolar processing enzyme (γ-VPE1), potentially involved in processing the maturation of fructosyltransferases in the vacuole, was also upregulated by TaMYB13-1 overexpression. Multiple TaMYB13 DNA-binding motifs were identified in the Ta1-FFT1 and Taγ-VPE1 promoters and were bound strongly by TaMYB13-1. The expression profiles of these target genes and TaMYB13-1 were highly correlated in recombinant inbred lines and during stem development as well as the transgenic and non-transgenic wheat dataset, further supporting a direct regulation of these genes by TaMYB13-1. TaMYB13-1 overexpression in wheat led to enhanced fructan accumulation in the leaves and stems and also increased spike weight and grain weight per spike in transgenic plants under water-limited conditions. These data suggest that TaMYB13-1 plays an important role in coordinated upregulation of genes necessary for fructan synthesis and can be used as a molecular tool to improve the high fructan trait.


Journal of Biotechnology | 1995

Modification of a xylanase cDNA isolated from an anaerobic fungus Neocallimastix patriciarum for high-level expression in Escherichia coli

Gang-Ping Xue; Stuart E. Denman; Donna Glassop; Jennifer S Johnson; Leanne Dierens; Kari S. Gobius; James H. Aylward

A Neocallimastix patriciarum xylanase cDNA with the core coding sequence essentially identical to xynA was isolated and modified for high-level expression in Escherichia coli. The xylanase cDNA was truncated into individual catalytic domains, which were modified at the N-terminus. These modified xylanases were synthesised as non-fusion proteins under the control of the tac promoter. High-level expression was obtained with the modified domain II construct, accounting for approx. 25% of total cellular protein. However, with the same vector and expression cassette, expression levels of constructs containing domain I or domains I and II fused in tandem were very low. RNA analysis revealed that the striking difference in expression levels of these three constructs was not due to transcription efficiency, but was mainly related to transcript stability. Further analysis of the domain II construct revealed that the high-level expression of the domain II xylanase was largely attributed to the presence of a favourable N-terminal coding sequence, as mutation at the N-terminus of the domain II dramatically reduced the expression level. The modified domain II xylanase produced in E. coli had a specific activity of 1229 U mg-1 protein at pH 7 and 50 degrees C without purification. The availability of a recombinant fungal xylanase with high specific activity and in high yield offers a potentially attractive source of xylanase for industrial applications.


Plant Molecular Biology | 2013

Dissecting the molecular basis of the contribution of source strength to high fructan accumulation in wheat

Gang-Ping Xue; Janneke Drenth; Donna Glassop; Maarten Kooiker; C. Lynne McIntyre

Fructans represent the major component of water soluble carbohydrates (WSCs) in the maturing stem of temperate cereals and are an important temporary carbon reserve for grain filling. To investigate the importance of source carbon availability in fructan accumulation and its molecular basis, we performed comparative analyses of WSC components and the expression profiles of genes involved in major carbohydrate metabolism and photosynthesis in the flag leaves of recombinant inbred lines from wheat cultivars Seri M82 and Babax (SB lines). High sucrose levels in the mature flag leaf (source organ) were found to be positively associated with WSC and fructan concentrations in both the leaf and stem of SB lines in several field trials. Analysis of Affymetrix expression array data revealed that high leaf sucrose lines grown in abiotic-stress-prone environments had high expression levels of a number of genes in the leaf involved in the sucrose synthetic pathway and photosynthesis, such as Calvin cycle genes, antioxidant genes involved in chloroplast H2O2 removal and genes involved in energy dissipation. The expression of the majority of genes involved in fructan and starch synthetic pathways were positively correlated with sucrose levels in the leaves of SB lines. The high level of leaf fructans in high leaf sucrose lines is likely attributed to the elevated expression levels of fructan synthetic enzymes, as the mRNA levels of three fructosyltransferase families were consistently correlated with leaf sucrose levels among SB lines. These data suggest that high source strength is one of the important genetic factors determining high levels of WSC in wheat.


Phytochemistry | 2010

Co-ordinated synthesis of gentiobiitol and sorbitol, evidence of sorbitol glycosylation in transgenic sugarcane.

Barrie Fong Chong; W. P. P. Abeydeera; Donna Glassop; Graham D. Bonnett; Michael G. O'Shea; S. M. Brumbley

Sugarcane (a Saccharum spp. interspecific hybrid) was previously engineered to synthesize sorbitol (designated as sorbitolcane). Motivated by the atypical development of the leaves in some sorbitolcane, the polar metabolite profiles in the leaves of those plants were compared against a group of control sugarcane plants. Eighty-six polar metabolites were detected in leaf extracts by GC-MS. Principal component analysis of the metabolites indicated that three compounds were strongly associated with sorbitolcane. Two were identified as sorbitol and gentiobiose and the third was unknown. Gentiobiose and the unknown compound were positively correlated with sorbitol accumulation. The unknown compound was only abundant in sorbitolcane. This compound was structurally characterized and found to be a sorbitol-glucose conjugate. (13)C NMR analysis indicated that the glucopyranose and glucitol moieties were 1,6-linked. Ligand exchange chromatography confirmed that the compound was a beta-anomer, thus identifying the compound as 6-O-beta-d-glucopyranosyl-D-glucitol, or gentiobiitol.


Physiologia Plantarum | 2018

Overexpression of TaCML20, a calmodulin-like gene, enhances water soluble carbohydrate accumulation and yield in wheat

Sundaravelpandian Kalaipandian; Gang-Ping Xue; Anne L. Rae; Donna Glassop; Graham D. Bonnett; Lynne C. McIntyre

Calcium (Ca2+ ) is a universal messenger that mediates intracellular responses to extracellular stimuli in living organisms. Calmodulin (CaM) and calmodulin-like (CML) proteins are the important Ca2+ sensors in plants that decode Ca2+ -signatures to execute downstream intracellular level responses. Several studies indicate the interlinking of Ca2+ and sugar signaling in plants; however, no genes have been functionally characterized to provide molecular evidence. Our study found that expression of TaCML20 was significantly correlated with water soluble carbohydrate (WSC) concentrations in recombinant inbred lines in wheat. TaCML20 has four EF-hand motifs that may facilitate the binding of Ca2+ . To explore the role of CML20, we generated TaCML20 overexpressing transgenic lines in wheat. These lines accumulated higher WSC concentrations in the shoots, and we also found a significantly increased transcript level of sucrose:sucrose-1-fructosyltransferase (1-SST) in the internodes compared with the control plants. In addition, TaCML20 overexpressing plants showed significantly increased tillers per plant and also increased about 19% of grain weight per plant compared with control plants. The results also suggested a role for TaCML20 in drought stress, as its transcripts significantly increased in the shoots of wild-type plants under water deficit. These results uncovered the role of CML20 in determining multiple traits in wheat.


Frontiers in Plant Science | 2018

Identification and Functional Characterization of Sugarcane Invertase Inhibitor (ShINH1): A Potential Candidate for Reducing Pre- and Post-harvest Loss of Sucrose in Sugarcane

Suresha G. Shivalingamurthy; Raveendra Anangi; Sundaravelpandian Kalaipandian; Donna Glassop; Glenn F. King; Anne L. Rae

In sugarcane, invertase enzymes play a key role in sucrose accumulation and are also involved in futile reactions where sucrose is continuously degraded during the pre- and post-harvest period, thereby reducing sugar yield and recovery. Invertase inhibitor (INVINH) proteins play a key role in post-translation regulation of plant invertases through which sucrose hydrolysis is controlled. INVINH proteins are small (18 kDa) members of the pectin methylesterase inhibitor superfamily and they are moderately conserved across plants. In the present study, we identified two INVINH genes from sugarcane, ShINH1 and ShINH2. In silico characterization of the encoded proteins revealed 43% sequence identity at the amino acid level, confirming the non-allelic nature of the proteins. The presence of putative signal peptide and subcellular targeting sequences revealed that ShINH1 and ShINH2 likely have apoplasmic and vacuolar localization, respectively. Experimental visualization of ShINH1–GFP revealed that ShINHI is indeed exported to the apoplast. Differential tissue-specific and developmental expression of ShINH1 between leaf, stalk, flower and root suggest that it plays a role in controlling source-sink metabolic regulation during sucrose accumulation in sugarcane. ShINH1 is expressed at relatively high levels in leaves and stalk compared to flowers and roots, and expression decreases significantly toward internodal maturity during stalk development. ShINH1 is expressed at variable levels in flowers with no specific association to floral maturity. Production of recombinant ShINH1 enabled experimental validation of protein function under in vitro conditions. Recombinant ShINH1 potently inhibited acid invertase (IC50 22.5 nM), making it a candidate for controlling pre- and post-harvest deterioration of sucrose in sugarcane. Our results indicate that ShINH1 and ShINH2 are likely to play a regulatory role in sucrose accumulation and contribute to the improvement of sugar yield and recovery in sugarcane.

Collaboration


Dive into the Donna Glassop's collaboration.

Top Co-Authors

Avatar

Graham D. Bonnett

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Anne L. Rae

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Gang-Ping Xue

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

C. Lynne McIntyre

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank W. Smith

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Janneke Drenth

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ray Shorter

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

S. M. Brumbley

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge