Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Graham D. Farquhar is active.

Publication


Featured researches published by Graham D. Farquhar.


Planta | 1980

A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.

Graham D. Farquhar; S. von Caemmerer; Joseph A. Berry

Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.


Planta | 1981

Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves

S. von Caemmerer; Graham D. Farquhar

A series of experiments is presented investigating short term and long term changes of the nature of the response of rate of CO2 assimilation to intercellular p(CO2). The relationships between CO2 assimilation rate and biochemical components of leaf photosynthesis, such as ribulose-bisphosphate (RuP2) carboxylase-oxygenase activity and electron transport capacity are examined and related to current theory of CO2 assimilation in leaves of C3 species. It was found that the response of the rate of CO2 assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at low and high intercellular p(CO2). In longer term changes in CO2 assimilation rate, induced by different growth conditions, the initial slope of the response of CO2 assimilation rate to intercellular p(CO2) could be correlated to in vitro measurements of RuP2 carboxylase activity. Also, CO2 assimilation rate at high p(CO2) could be correlated to in vitro measurements of electron transport rate. These results are consistent with the hypothesis that CO2 assimilation rate is limited by the RuP2 saturated rate of the RuP2 carboxylase-oxygenase at low intercellular p(CO2) and by the rate allowed by RuP2 regeneration capacity at high intercellular p(CO2).


Planta | 1985

Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light: Estimates from gas-exchange measurements on spinach

A. Brooks; Graham D. Farquhar

Responses of the rate of net CO2 assimilation (A) to the intercellular partial pressure of CO2 (pi) were measured on intact spinach (Spinacia oleracea L.) leaves at different irradiances. These responses were analysed to find the value of pi at which the rate of photosynthetic CO2 uptake equalled that of photorespiratory CO2 evolution. At this CO2 partial pressure (denoted Г), net rate of CO2 assimilation was negative, indicating that there was non-photorespiratory CO2 evolution in the light. Hence Г was lower than the CO2 compensation point, Γ. Estimates of Г were obtained at leaf temperatures from 15 to 30°C, and the CO2/O2 specificity of ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (E.C. 4.1.1.39) was calculated from these data, taking into account changes in CO2 and O2 solubilities with temperature. The CO2/O2 specificity decreased with increasing temperature. Therefore we concluded that temperature effects on the ratio of photorespiration to photosynthesis were not solely the consequence of differential effects of temperature on the solubilities of CO2 and O2. Our estimates of the CO2/O2 specificity of RuBP carboxylase/oxygenase are compared with in-vitro measurements by other authors. The rate of nonphotorespiratory CO2 evolution in the light (Rd) was obtained from the value of A at Г. At this low CO2 partial pressure, Rd was always less than the rate of CO2 evolution in darkness and appeared to decrease with increasing irradiance. The decline was most marked up to about 100 μmol quanta m-2 s-1 and less marked at higher irradiances. At one particular irradiance, however, Rd as a proportion of the rate of CO2 evolution in darkness was similar in different leaves and this proportion was unaffected by leaf temperature or by [O2] (ambient and greater). After conditions of high [CO2] and high irradiance for several hours, the rate of CO2 evolution in darkness increased and Rd also increased.


Science | 2002

The Cause of Decreased Pan Evaporation over the Past 50 Years

Michael L. Roderick; Graham D. Farquhar

We measured acoustic emission energy during antigorite dehydration in a multianvil press from 1.5 to 8.5 gigapascals and 300° to 900°C. There was a strong acoustic emission signal on dehydration, and analysis of recovered samples revealed brittle deformation features associated with high pore-fluid pressures. These results demonstrate that intermediate depth (50 to 200 kilometers) seismicity can be generated by dehydration reactions in the subducting slab.


Archive | 1982

Modelling of Photosynthetic Response to Environmental Conditions

Graham D. Farquhar; S. von Caemmerer

Photosynthesis is the incorporation of carbon, nitrogen, sulphur and other substances into plant tissue using light energy from the sun. Most of this energy is used for the reduction of carbon dioxide and, consequently, there is a large body of biochemical and biophysical information about photo synthetic carbon assimilation. In an ecophysiological context, we believe that most of today’s biochemical knowledge can be summarized in a few simple equations. These equations represent the rate of ribulose bisphosphate (RuP2)-saturated carboxylation, the ratio of photorespiration to carboxylation, and the rates of electron transport/photophosphorylation and of “dark” respiration in the light. There are many other processes that could potentially limit CO2 assimilation, but probably do so rarely in practice. Fundamentally this may be due to the expense, in terms of invested nitrogen, of the carboxylase and of thylakoid functioning. To reach our final simple equations we must first discuss the biochemical and biophysical structures — as they are understood at present — that finally reduce the vast number of potentially rate-limiting processes to the four or five listed above. A diagrammatic representation of these processes is given in Fig. 16.1.


Ecological studies | 1989

Carbon Isotope Fractionation and Plant Water-Use Efficiency

Graham D. Farquhar; Kerry T. Hubick; Anthony G. Condon; R. A. Richards

In order for plants to grow, they must fix carbon. Carbon usually enters the leaves as carbon dioxide, diffusing through pores in the epidermis called stomata. Increased stomatal conductance, g, of leaves causes an increase in the partial pressure of CO2 inside the leaves, p i . This usually causes an increase in the rate of CO2 assimilation, A, but also allows a greater rate of transpirational water loss, E. Such an action by a plant is a gamble, because while it increases the likelihood of growth and reproductive success, it also increases the probability of desiccation and death (Cowan 1986).


Oecologia | 1994

13C discrimination during CO2 assimilation by the terrestrial biosphere

J. Lloyd; Graham D. Farquhar

Estimates of the extent of the discrimination against13CO2 during photosynthesis (ΔA) on a global basis were made using gridded data sets of temperature, precipitation, elevation, humidity and vegetation type. Stomatal responses to leaf-to-air vapour mole fraction difference (D, leaf-to-air vapour pressure difference divided by atmospheric pressure) were first determined by a literature review and by assuming that stomatal behaviour results in the optimisation of plant water use in relation to carbon gain. Using monthly time steps, modelled stomatal responses toD were used to calculate the ratio of stomatal cavity to ambient CO2 mole fractions and then, in association with leaf internal conductances, to calculate ΔA. Weighted according to gross primary productivity (GPP, annual net CO2 asimilation per unit ground area), estimated ΔA for C3 biomes ranged from 12.9‰ for xerophytic woods and shrub to 19.6‰ for cool/cold deciduous forest, with an average value from C3 plants of 17.8‰. This is slightly less than the commonly used values of 18–20‰. For C4 plants the average modelled discrimination was 3.6‰, again slightly less than would be calculated from C4 plant dry matter carbon isotopic composition (yielding around 5‰). From our model we estimate that, on a global basis, 21% of GPP is by C4 plants and for the terrestrial biosphere as a whole we calculate an average isotope discrimination during photosynthesis of 14.8‰. There are large variations in ΔA across the globe, the largest of which are associated with the precence or absence of C4 plants. Due to longitudinal variations in ΔA, there are problems in using latitudinally averaged terrestrial carbon isotope discriminations to calculate the ratio of net oceanic to net terrestrial carbon fluxes.


Stable Isotopes and Plant Carbon-water Relations | 1993

5 – Carbon and Oxygen Isotope Effects in the Exchange of Carbon Dioxide between Terrestrial Plants and the Atmosphere

Graham D. Farquhar; Jon Lloyd

Publisher Summary This chapter discusses the effects of carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and atmosphere. Plants differ from the atmosphere in their average relative abundances of carbon isotopes. This variation arises because the kinetic parameters of chemical reactions can be affected by the atomic masses of the compounds involved. The chapter describes the processes affecting carbon isotope exchange between plants and the atmosphere. There is a significant difference between long-term isotope discrimination and short-term “on-line” measures of discrimination. The reasons for this remain to be determined, but fractionations postphotosynthesis may be involved. Oxygen isotopes are of interest to plant carbon and water relations. It is possible that the 18O /16O ratio of organic matter may be useful for determining whether differences between genotypes in δ13C and Cc/Ca are caused by differences in photosynthetic capacity or in stomatal conductance. The 18O/16O ratio in atmospheric CO2 provides an additional information about exchange between the atmosphere and water, some of which is via biological activity.


Oecologia | 1991

Carbon isotope discrimination by plants follows latitudinal and altitudinal trends

Ch. Körner; Graham D. Farquhar; S. C. Wong

SummaryIn an earlier paper we provided evidence that carbon isotope discrimination during photosynthesis of terrestrial C3 plants decreases with altitude, and it was found that this was associated with greater carboxylation efficiency at high altitudes. Changing partial pressures of CO2 and O2 and changing temperature are possible explanations, since influences of moisture and light were reduced to a minimum by selective sampling. Here we analyse plants sampled using the same criteria, but from high and low altitudes along latitudinal gradients from the equator to the polar ends of plant distribution. These data should permit separation of the pressure and temperature components (Fig. 1). Only leaves of fully sunlit, non-water-stressed, herbaceous C3 plants are compared. The survey covers pressure differences of 400 mbar (ca. 5000 m) and 78 degrees of latitude (ca 25 K of mean temperature of growth period). When habitats of similar low temperature (i.e. high altitude at low latitude and low altitude at polar latitude) are compared, discrimination increases towards the pole (with decreasing altitude and thus increasing atmospheric pressure). Latitudinally decreasing temperature at almost constant atmospheric pressure (samples from low altitude) is associated with a decrease in discrimination. So, polar low-altitude plants have δ13C values half way between humid tropical lowland and tropical alpine plants. It is unlikely that latitudinal changes of the light regime had an effect, since low and high altitude plants show contrasting latitudinal trends in δ13C although local altitudinal differences in overall light consumption were small. These results suggest that both temperature and atmospheric pressure are responsible for the altitudinal trends in 13C discrimination. Temperature effects may partly be related to increased leaf thickness (within the same leaf type) in cold environments. Theoretical considerations and laboratory experiments suggest that it is the oxygen partial pressure that is responsible for the pressure related change in discrimination. The study also provided results of practical significance for the use of carbon isotope data. Within a community of C3 plants, discrimination in species of similar life form, exposed to similar light, water and ambient CO2 conditions ranges over 4‰, with standard deviations for 10–30 species of ±0.6 to 1.2‰. This natural variation has to be taken into account by using a sufficient sample size and standardization of sampling in any attempt at ecological site characterization using carbon isotope data. Evidence of a pronounced genotypic component of this variation in 13C discrimination in wild C3 plant species is provided. Correlations with dry matter partitioning, mesophyll thickness and nitrogen content are also present.


Nature | 2005

The ERECTA gene regulates plant transpiration efficiency in Arabidopsis.

Josette Masle; Scott Gilmore; Graham D. Farquhar

Assimilation of carbon by plants incurs water costs. In the many parts of the world where water is in short supply, plant transpiration efficiency, the ratio of carbon fixation to water loss, is critical to plant survival, crop yield and vegetation dynamics. When challenged by variations in their environment, plants often seem to coordinate photosynthesis and transpiration, but significant genetic variation in transpiration efficiency has been identified both between and within species. This has allowed plant breeders to develop effective selection programmes for the improved transpiration efficiency of crops, after it was demonstrated that carbon isotopic discrimination, Δ, of plant matter was a reliable and sensitive marker negatively related to variation in transpiration efficiency. However, little is known of the genetic controls of transpiration efficiency. Here we report the isolation of a gene that regulates transpiration efficiency, ERECTA. We show that ERECTA, a putative leucine-rich repeat receptor-like kinase (LRR-RLK) known for its effects on inflorescence development, is a major contributor to a locus for Δ on Arabidopsis chromosome 2. Mechanisms include, but are not limited to, effects on stomatal density, epidermal cell expansion, mesophyll cell proliferation and cell–cell contact.

Collaboration


Dive into the Graham D. Farquhar's collaboration.

Top Co-Authors

Avatar

Michael L. Roderick

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Tcherkez

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Anthony G. Condon

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Suan Chin Wong

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilary Stuart-Williams

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Kerry T. Hubick

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge