Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas N. Buckley is active.

Publication


Featured researches published by Thomas N. Buckley.


Plant Physiology | 2006

Evidence for involvement of photosynthetic processes in the stomatal response to CO2.

Susanna M. Messinger; Thomas N. Buckley; Keith A. Mott

Stomatal conductance (gs) typically declines in response to increasing intercellular CO2 concentration (ci). However, the mechanisms underlying this response are not fully understood. Recent work suggests that stomatal responses to ci and red light (RL) are linked to photosynthetic electron transport. We investigated the role of photosynthetic electron transport in the stomatal response to ci in intact leaves of cocklebur (Xanthium strumarium) plants by examining the responses of gs and net CO2 assimilation rate to ci in light and darkness, in the presence and absence of the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and at 2% and 21% ambient oxygen. Our results indicate that (1) gs and assimilation rate decline concurrently and with similar spatial patterns in response to DCMU; (2) the response of gs to ci changes slope in concert with the transition from Rubisco- to electron transport-limited photosynthesis at various irradiances and oxygen concentrations; (3) the response of gs to ci is similar in darkness and in DCMU-treated leaves, whereas the response in light in non-DCMU-treated leaves is much larger and has a different shape; (4) the response of gs to ci is insensitive to oxygen in DCMU-treated leaves or in darkness; and (5) stomata respond normally to RL when ci is held constant, indicating the RL response does not require a reduction in ci by mesophyll photosynthesis. Together, these results suggest that part of the stomatal response to ci involves the balance between photosynthetic electron transport and carbon reduction either in the mesophyll or in guard cell chloroplasts.


Plant Cell and Environment | 2013

Modelling stomatal conductance in response to environmental factors

Thomas N. Buckley; Keith A. Mott

Stomata are an attractive system for modellers for many reasons, and the literature contains a large number of papers describing models that predict stomatal conductance as a function of environmental factors. The approaches and goals of these models vary considerably. This review summarizes these different approaches and discusses their strengths and weaknesses with a focus on mechanistically based models. The critical unresolved questions are highlighted and placed in the context of current research on stomatal physiology. Finally, directions for future research are considered.


Plant Physiology | 2011

The role of bundle sheath extensions and life form in stomatal responses to leaf water status

Thomas N. Buckley; Lawren Sack; Matthew E. Gilbert

Bundle sheath extensions (BSEs) are key features of leaf structure with currently little-understood functions. To test the hypothesis that BSEs reduce the hydraulic resistance from the bundle sheath to the epidermis (rbe) and thereby accelerate hydropassive stomatal movements, we compared stomatal responses with reduced humidity and leaf excision among 20 species with heterobaric or homobaric leaves and herbaceous or woody life forms. We hypothesized that low rbe due to the presence of BSEs would increase the rate of stomatal opening (V) during transient wrong-way responses, but more so during wrong-way responses to excision (Ve) than humidity (Vh), thus increasing the ratio of Ve to Vh. We predicted the same trends for herbaceous relative to woody species given greater hydraulic resistance in woody species. We found that Ve, Vh, and their ratio were 2.3 to 4.4 times greater in heterobaric than homobaric leaves and 2.0 to 3.1 times greater in herbaceous than woody species. To assess possible causes for these differences, we simulated these experiments in a dynamic compartment/resistance model, which predicted larger Ve and Ve/Vh in leaves with smaller rbe. These results support the hypothesis that BSEs reduce rbe. Comparison of our data and simulations suggested that rbe is approximately 4 to 16 times larger in homobaric than heterobaric leaves. Our study provides new evidence that variations in the distribution of hydraulic resistance within the leaf and plant are central to understanding dynamic stomatal responses to water status and their ecological correlates and that BSEs play several key roles in the functional ecology of heterobaric leaves.


Plant Cell and Environment | 2015

The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves

Thomas N. Buckley

Water movement from the xylem to stomata is poorly understood. There is still no consensus about whether apoplastic or symplastic pathways are more important, and recent work suggests vapour diffusion may also play a role. The objective of this study was to estimate the proportions of hydraulic conductance outside the bundle sheath contributed by apoplastic, symplastic and gas phase pathways, using a novel analytical framework based on measurable anatomical and biophysical parameters. The calculations presented here suggest that apoplastic pathways provide the majority of conductance outside the bundle sheath under most conditions, whereas symplastic pathways contribute only a small proportion. The contributions of apoplastic and gas phase pathways vary depending on several critical but poorly known or highly variable parameters namely, the effective Poiseuille radius for apoplastic bulk flow, the thickness of cell walls and vertical temperature gradients within the leaf. The gas phase conductance should increase strongly as the leaf centre becomes warmer than the epidermis - providing up to 44% of vertical water transport for a temperature gradient of 0.2 K. These results may help to explain how leaf water transport is influenced by light absorption, temperature and differences in leaf anatomy among species.


Plant Physiology | 2015

How Does Leaf Anatomy Influence Water Transport outside the Xylem

Thomas N. Buckley; Grace P. John; Christine Scoffoni; Lawren Sack

Anatomical data from diverse species, applied to a novel integrative model, elucidate the mechanistic basis of differences in water transport outside the xylem in leaves. Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function.


New Phytologist | 2015

How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents

Hendrik Poorter; Andrzej M. Jagodziński; Ricardo Ruiz-Peinado; Shem Kuyah; Yunjian Luo; Jacek Oleksyn; Vladimir Usoltsev; Thomas N. Buckley; Peter B. Reich; Lawren Sack

Summary We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio.


Archive | 2002

Stomatal Water Relations and the Control of Hydraulic Supply and Demand

Thomas N. Buckley; Keith A. Mott

Stomata have fascinated plant biologists for well over 100 years. It is difficult to think of another plant system that responds to so many factors or displays such complexity at so many levels. Indeed, when one considers the number of feedback loops involving stomatal conductance and all of the potential interactions among these feedbacks, it is really quite remarkable that stomata work at all.


Plant Cell and Environment | 2011

An analytical model of non‐photorespiratory CO2 release in the light and dark in leaves of C3 species based on stoichiometric flux balance

Thomas N. Buckley; Mark A. Adams

Leaf respiration continues in the light but at a reduced rate. This inhibition is highly variable, and the mechanisms are poorly known, partly due to the lack of a formal model that can generate testable hypotheses. We derived an analytical model for non-photorespiratory CO₂ release by solving steady-state supply/demand equations for ATP, NADH and NADPH, coupled to a widely used photosynthesis model. We used this model to evaluate causes for suppression of respiration by light. The model agrees with many observations, including highly variable suppression at saturating light, greater suppression in mature leaves, reduced assimilatory quotient (ratio of net CO₂ and O₂ exchange) concurrent with nitrate reduction and a Kok effect (discrete change in quantum yield at low light). The model predicts engagement of non-phosphorylating pathways at moderate to high light, or concurrent with processes that yield ATP and NADH, such as fatty acid or terpenoid synthesis. Suppression of respiration is governed largely by photosynthetic adenylate balance, although photorespiratory NADH may contribute at sub-saturating light. Key questions include the precise diel variation of anabolism and the ATP : 2e⁻ ratio for photophosphorylation. Our model can focus experimental research and is a step towards a fully process-based model of CO₂ exchange.


Plant Cell and Environment | 2016

Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor

Celia M. Rodriguez-Dominguez; Thomas N. Buckley; Gregorio Egea; Alfonso de Cires; Virginia Hernandez-Santana; Sebastià Martorell; Antonio Diaz-Espejo

Reduced stomatal conductance (gs ) during soil drought in angiosperms may result from effects of leaf turgor on stomata and/or factors that do not directly depend on leaf turgor, including root-derived abscisic acid (ABA) signals. To quantify the roles of leaf turgor-mediated and leaf turgor-independent mechanisms in gs decline during drought, we measured drought responses of gs and water relations in three woody species (almond, grapevine and olive) under a range of conditions designed to generate independent variation in leaf and root turgor, including diurnal variation in evaporative demand and changes in plant hydraulic conductance and leaf osmotic pressure. We then applied these data to a process-based gs model and used a novel method to partition observed declines in gs during drought into contributions from each parameter in the model. Soil drought reduced gs by 63-84% across species, and the model reproduced these changes well (r(2)  = 0.91, P < 0.0001, n = 44) despite having only a single fitted parameter. Our analysis concluded that responses mediated by leaf turgor could explain over 87% of the observed decline in gs across species, adding to a growing body of evidence that challenges the root ABA-centric model of stomatal responses to drought.


Plant Cell and Environment | 2013

What does optimization theory actually predict about crown profiles of photosynthetic capacity when models incorporate greater realism

Thomas N. Buckley; Alessandro Cescatti; Graham D. Farquhar

Measured profiles of photosynthetic capacity in plant crowns typically do not match those of average irradiance: the ratio of capacity to irradiance decreases as irradiance increases. This differs from optimal profiles inferred from simple models. To determine whether this could be explained by omission of physiological or physical details from such models, we performed a series of thought experiments using a new model that included more realism than previous models. We used ray-tracing to simulate irradiance for 8000 leaves in a horizontally uniform canopy. For a subsample of 500 leaves, we simultaneously optimized both nitrogen allocation (among pools representing carboxylation, electron transport and light capture) and stomatal conductance using a transdermally explicit photosynthesis model. Few model features caused the capacity/irradiance ratio to vary systematically with irradiance. However, when leaf absorptance varied as needed to optimize distribution of light-capture N, the capacity/irradiance ratio increased up through the crown - that is, opposite to the observed pattern. This tendency was counteracted by constraints on stomatal or mesophyll conductance, which caused chloroplastic CO(2) concentration to decline systematically with increasing irradiance. Our results suggest that height-related constraints on stomatal conductance can help to reconcile observations with the hypothesis that photosynthetic N is allocated optimally.

Collaboration


Dive into the Thomas N. Buckley's collaboration.

Top Co-Authors

Avatar

Graham D. Farquhar

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawren Sack

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Diaz-Espejo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grace P. John

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge