Graham J. Taylor
University of Tennessee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Graham J. Taylor.
Langmuir | 2015
Graham J. Taylor; Stephen A. Sarles
Droplet interface bilayers (DIBs) serve as a convenient platform to study interactions between synthetic lipid membranes and proteins. However, a majority of DIBs have been assembled using a single lipid type, diphytanoylphosphatidylcholine (DPhPC). The work described herein establishes a new method to assemble DIBs using total lipid extract from Escherichia coli (eTLE); it is found that incubating oil-submerged aqueous droplets containing eTLE liposomes at a temperature above the gel-fluid phase transition temperature (Tg) promotes monolayer self-assembly that does not occur below Tg. Once monolayers are properly assembled via heating, droplets can be directly connected or cooled below Tg and then connected to initiate bilayer formation. This outcome contrasts immediate droplet coalescence observed upon contact between nonheated eTLE-infused droplets. Specific capacitance measurements confirm that the interface between droplets containing eTLE lipids is a lipid bilayer with thickness of 29.6 Å at 25 °C in hexadecane. We observe that bilayers formed from eTLE or DPhPC survive cooling and heating between 25 and 50 °C and demonstrate gigaohm (GΩ) membrane resistances at all temperatures tested. Additionally, we study the insertion of alamethicin peptides into both eTLE and DPhPC membranes to understand how lipid composition, temperature, and membrane phase influence ion channel formation. Like in DPhPC bilayers, alamethicin peptides in eTLE exhibit discrete, voltage-dependent gating characterized by multiple open channel conductance levels, though at significantly lower applied voltages. Cyclic voltammetry measurements of macroscopic channel currents confirm that the voltage-dependent conductance of alamethicin channels in eTLE bilayers occurs at lower voltages than in DPhPC bilayers at equivalent peptide concentrations. This result suggests that eTLE membranes, via composition, fluidity, or the presence of subdomains, offer an environment that enhances alamethicin insertion. For both membrane compositions, increasing temperature reduces the lifetimes of single channel gating events and increases the voltage required to cause an exponential increase in channel current. However, the fact that alamethicin insertion in eTLE exhibits significantly greater sensitivity to temperature changes through its Tg suggests that membrane phase plays an important role in channel formation. These effects are much less severe in DPhPC, where heating from 25 to 50 °C does not induce a phase change. The described technique for heating-assisted monolayer formation permits the use of other high transition temperature lipids in aqueous droplets for DIB formation, thereby increasing the types of lipids that can be considered for assembling model membranes.
Langmuir | 2015
Prachya Mruetusatorn; Georgios Polizos; Panos G. Datskos; Graham J. Taylor; Stephen A. Sarles; Jonathan B. Boreyko; Douglas G. Hayes; C. Patrick Collier
Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, airDIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that the lifetimes of airDIBs can be extended by as much as an order of magnitude by maintaining the temperature just above the dew point. We find that raising the temperature from near the dew point (which was 7 °C at 38.5% relative humidity and 22 °C air temperature) to 20 °C results in the loss of hydrated water molecules from the polar headgroups of the lipid bilayer membrane due to evaporation, resulting in a phase transition with increased disorder. This dehydration transition primarily affects the bilayer electrical resistance by increasing the permeability through an increasingly disordered polar headgroup region of the bilayer. Temperature and relative humidity are conveniently tunable parameters for controlling the stability and composition of airDIB membranes while still allowing for operation in ambient environments.
Langmuir | 2017
Graham J. Taylor; Frederick A. Heberle; Jason Sharp Seinfeld; John Katsaras; C. Patrick Collier; Stephen A. Sarles
In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interface bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ∼38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.
Biomicrofluidics | 2018
Guru A. Venkatesan; Graham J. Taylor; Colin M. Basham; Nathan G. Brady; C. Patrick Collier; Stephen A. Sarles
In this article, we report on a new experimental methodology to enable reliable formation of droplet interface bilayer (DIB) model membranes with two types of unsaturated lipids that have proven difficult for creating stable DIBs. Through the implementation of a simple evaporation technique to condition the spontaneously assembled lipid monolayer around each droplet, we increased the success rates of DIB formation for two distinct unsaturated lipids, namely 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), from less than 10% to near 100%. Separately, using a pendant drop tensiometer, we learned that: (a) DOPC and POPC monolayers do not spontaneously assemble into their tightest possible configurations at an oil-water interface, and (b) reducing the surface area of a water droplet coated with a partially packed monolayer leads to a more tightly packed monolayer with an interfacial tension lower than that achieved by spontaneous assembly alone. We also estimated from Langmuir compression isotherms obtained for both lipids that the brief droplet evaporation procedure prior to DIB formation resulted in a 6%-16% reduction in area per lipid for DOPC and POPC, respectively. Finally, the increased success rates of formation for DOPC and POPC DIBs enabled quantitative characterization of unsaturated lipid membrane properties including electrical resistance, rupture potential, and specific capacitance.
Biochimica et Biophysica Acta | 2018
Graham J. Taylor; Mary-Anne Nguyen; Subhadeep Koner; Eric Freeman; C. Patrick Collier; Stephen A. Sarles
The droplet interface bilayer (DIB) method offers simple control over initial leaflet compositions in model membranes, enabling an experimental path to filling gaps in our knowledge about the interplay between compositional lipid asymmetry, membrane properties, and the behaviors of membrane-active species. Yet, the stability of lipid leaflet asymmetry in DIBs has received very little attention, particularly in the presence of peptides and ion channels that are often studied in DIBs. Herein, we demonstrate for the first time parallel, capacitance-based measurements of intramembrane potential with arrays of asymmetric DIBs assembled in a microfluidic device to characterize the stability of leaflet asymmetry over many hours in the presence and absence of membrane-active peptides. DIBs assembled from opposing monolayers of the ester (DPhPC) and ether (DOPhPC) forms of diphytanoyl-phosphatidylcholine yielded asymmetric bilayers with leaflet compositions that were stable for at least 18 h as indicated by a stable |137 mV| intramembrane potential. In contrast, the addition of surface-bound alamethicin peptides caused a gradual, concentration-dependent decrease in the magnitude of the dipole potential difference. Intermittent current-voltage measurements revealed that alamethicin in asymmetric DIBs also shifts the threshold voltage required to drive peptide insertion and ion channel formation. These outcomes take place over the course of 1 to 5 h after membrane formation, and suggest that alamethicin peptides promote lipid flip-flop, even in the un-inserted, surface-bound state, by disordering lipids in the monolayer to which they bind. Moreover, this methodology establishes the use of parallel electrophysiology for efficiently studying membrane asymmetry in arrays of DIBs.
ACS Nano | 2018
Joseph S. Najem; Graham J. Taylor; Ryan Weiss; Sakib Hasan; Garrett S. Rose; Catherine D. Schuman; Alex Belianinov; C. Patrick Collier; Stephen A. Sarles
Solid-state neuromorphic systems based on transistors or memristors have yet to achieve the interconnectivity, performance, and energy efficiency of the brain due to excessive noise, undesirable material properties, and nonbiological switching mechanisms. Here we demonstrate that an alamethicin-doped, synthetic biomembrane exhibits memristive behavior, emulates key synaptic functions including paired-pulse facilitation and depression, and enables learning and computing. Unlike state-of-the-art devices, our two-terminal, biomolecular memristor features similar structure (biomembrane), switching mechanism (ion channels), and ionic transport modality as biological synapses while operating at considerably lower power. The reversible and volatile voltage-driven insertion of alamethicin peptides into an insulating lipid bilayer creates conductive pathways that exhibit pinched current-voltage hysteresis at potentials above their insertion threshold. Moreover, the synapse-like dynamic properties of the biomolecular memristor allow for simplified learning circuit implementations. Low-power memristive devices based on stimuli-responsive biomolecules represent a major advance toward implementation of full synaptic functionality in neuromorphic hardware.
Volume 2: Integrated System Design and Implementation; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting | 2015
Nima Tamaddoni; Graham J. Taylor; Stephen A. Sarles
In this work, a recently developed method for forming copolymer-stabilized interfaces (CSI) between aqueous droplets is pursued to as a means to construct smart materials and systems. The ABA type copolymer employed consists of two hydrophilic (PEO) groups sandwiching a hydrophobic PDMS core. Aqueous droplets submerged in triblock copolymer (PEO-PDMS-PEO)-oil mixtures are rapidly coated in copolymer monolayers, however, unlike phospholipid-stabilized droplet interface bilayers (DIBs), electrical measurements reveal that there is no spontaneous formation of a “thinned” interface with droplet contact alone. The capacitance of the interface begins increasing significantly only upon application of sufficient voltage (>100mV), and capacitance then stabilizes within minutes. Further, the interfacial capacitance and area decreases when applied voltage is reduced back to 0mV, and droplets eventually return to their initial separated state. The fact that droplet adhesion and formation of the interface is voltage dependent and completely reversible clearly distinguishes a CSI from a DIB, and the novel polymer based interface is significantly more robust with average rupture potential of ≥ 800mV compared to 200–300mV with DIBs.Durable and stable CSIs could feasibly be used in applications ranging from sensing and energy harvesting to mechanical actuation. To demonstrate, this work introduces a new version of the DIB based hair cell sensor, now replacing lipids with block copolymers to provide greater durability, stability, and resistance to rupture when subjected to airflow. We calculate the current generated by the vibrating membranes in DIBs and CSIs to study the influence of surfactant selection on the hair cell durability and the related airflow operation range. We conclude that the hair cell constructed using triblock copolymer, as opposed to a DIB, withstands higher nominal airflow speeds (45m/s) and higher applied bias voltages (i.e. 0.1–1V) without rupturing. The ability to apply higher voltages provides a means of tuning the hair-cell sensitivity. Separately, the results of initial trials demonstrate the possibility for voltage-controlled shape change using networks of droplets and CSIs. The ability to apply large voltages and induce change in interfacial area leads to rearrangement of the droplet networks due to conservation of volume. Several embodiments of possible actuators based on this mechanism are discussed. In concert, the various aspects of this work highlight the potential use of CSIs in developing novel, reliable smart materials for sensing and actuation.Copyright
Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting | 2013
Graham J. Taylor; Andy Sarles
Synthetic lipid bilayers provide a cell-inspired environment for studying the functions of biomolecules. The regulated attachment method (RAM) is one method for forming liquid-supported lipid bilayers — known as droplet interface bilayers (DIBs) — that form at the interface of lipid-encased aqueous volumes in oil. While RAM allows for independent control of the aqueous phases on both sides of the membrane and provides a convenient way to control the size of the bilayer, previous studies utilizing this technique have been performed exclusively at room temperature. The goal of this research is to incorporate proportional-integral (PI) feedback control of temperature within the flexible RAM substrate with initial efforts focused on heating above room temperature. The proposed system includes a resistive etched-foil heating element and wire-type thermocouples for point-wise temperature measurement in standard RAM substrates. Open loop heating tests are used to map the magnitudes of steady state temperature distributions within the substrate and characterize the dynamic heating response. These tests show that a first-order heating model accurately describes transient temperature responses to heater power inputs. A one-probe configuration is found to provide measurements that are within <1°C of temperature measured at the bilayer region. The optimized probe configuration is used in PI feedback control, where the closed loop system is found to track the desired temperature to within +/−0.3°C. Experiments of temperature control with aqueous lipid droplets present permit electrical measurements of bilayer area without increasing background noise. Using this platform, we study the effect of temperature on the stability and size of a diphytanoyl phosphatidylcholine (DPhPC) lipid bilayer, and we observe that increasing the temperature of the bilayer from room temperature to 30°C results in a 30% decrease in the area of the membrane.Copyright
Volume 2: Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bio-Inspired Materials and Systems; Energy Harvesting | 2012
Graham J. Taylor; Donald J. Leo; Andy Sarles
Many signaling mechanisms in living cells occur at biological boundaries via cell surface receptors and membrane proteins embedded in lipid bilayers. The coordination of actions of sensory and motor neurons in the nervous system represents one example of many that heavily depends on lipid membrane bound receptor mediated signaling. As a result, chemical and biological toxins that disrupt these neural signals can have severe physiological effects, including paralysis and death. Botulinum neurotoxin Type A (BoNT/A) is a proteolytic toxin that inserts through vesicle membranes and cleaves membrane receptors involved with synaptic acetylcholine uptake and nervous system signal conduction.In this work, we investigate the use of a Bioinspired liquid-supported interface bilayer for studying the insertion of BoNT/A toxin molecules into synthetic lipid bilayers. DPhPC lipid bilayers are formed using the regulated attachment method (RAM), as developed by Sarles and Leo, and we perform current measurements on membranes exposed to BoNT/A toxin to characterize activity of toxin interacting with the synthetic bilayer. Control tests without toxin present are also presented. The results of these tests show an increase in the magnitude of current through the bilayer when the toxin is included. We interpret these initial results to mean that incorporation of BoNT/A toxin at a high concentration in an interface bilayer increases the permeability of the membrane as a result of toxin molecules spanning the thickness of the bilayer.Copyright
Soft Matter | 2015
Graham J. Taylor; Guru A. Venkatesan; C. Patrick Collier; Stephen A. Sarles