Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John Katsaras is active.

Publication


Featured researches published by John Katsaras.


Biophysical Journal | 2013

Hybrid and Nonhybrid Lipids Exert Common Effects on Membrane Raft Size and Morphology

Frederick A. Heberle; Milka Doktorova; Shih Lin Goh; Robert F. Standaert; John Katsaras; Gerald W. Feigenson

Nanometer-scale domains in cholesterol-rich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chain-asymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain. Hybrid lipids generate nanodomains in some model membranes and are also abundant in the PM. It was proposed that they align in a preferred orientation at the boundary of ordered and disordered phases, lowering the interfacial energy and thus reducing domain size. We used small-angle neutron scattering and fluorescence techniques to detect nanoscopic and modulated liquid phase domains in a mixture composed entirely of nonhybrid lipids and cholesterol. Our results are indistinguishable from those obtained previously for mixtures containing hybrid lipids, conclusively showing that hybrid lipids are not required for the formation of nanoscopic liquid domains and strongly implying a common mechanism for the overall control of raft size and morphology. We discuss implications of these findings for theoretical descriptions of nanodomains.


Soft Matter | 2014

The molecular structure of a phosphatidylserine bilayer determined by scattering and molecular dynamics simulations.

Jianjun Pan; Xiaolin Cheng; Luca Monticelli; Frederick A. Heberle; Norbert Kučerka; D. Peter Tieleman; John Katsaras

Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 Å(2) at 25 °C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na(+) ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.


Biochimica et Biophysica Acta | 2014

Revisiting the bilayer structures of fluid phase phosphatidylglycerol lipids: Accounting for exchangeable hydrogens.

Jianjun Pan; Drew Marquardt; Frederick A. Heberle; Norbert Kučerka; John Katsaras

We recently published two papers detailing the structures of fluid phase phosphatidylglycerol (PG) lipid bilayers (Kučerka et al., 2012 J. Phys. Chem. B 116: 232-239; Pan et al., 2012 Biochim. Biophys. Acta Biomembr. 1818: 2135-2148), which were determined using the scattering density profile model. This hybrid experimental/computational technique utilizes molecular dynamics simulations to parse a lipid bilayer into components whose volume probabilities follow simple analytical functional forms. Given the appropriate scattering densities, these volume probabilities are then translated into neutron scattering length density (NSLD) and electron density (ED) profiles, which are used to jointly refine experimentally obtained small angle neutron and X-ray scattering data. However, accurate NSLD and ED profiles can only be obtained if the bilayers chemical composition is known. Specifically, in the case of neutron scattering, the lipids exchangeable hydrogens with aqueous D2O must be accounted for, as they can have a measureable effect on the resultant lipid bilayer structures. This was not done in our above-mentioned papers. Here we report on the molecular structures of PG lipid bilayers by appropriately taking into account the exchangeable hydrogens. Analysis indicates that the temperature-averaged PG lipid areas decrease by 1.5 to 3.8Å(2), depending on the lipids acyl chain length and unsaturation, compared to PG areas when hydrogen exchange was not taken into account.


Biophysical Journal | 2015

Interactions of the Anticancer Drug Tamoxifen with Lipid Membranes

Nawal K. Khadka; Xiaolin Cheng; Chian Sing Ho; John Katsaras; Jianjun Pan

Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption bands magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer area compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM.


PLOS Biology | 2017

The in vivo structure of biological membranes and evidence for lipid domains

Jonathan D. Nickels; Sneha Chatterjee; Christopher B. Stanley; Shuo Qian; Xiaolin Cheng; Dean A. A. Myles; Robert F. Standaert; James G. Elkins; John Katsaras; Daniel Lopez

Examining the fundamental structure and processes of living cells at the nanoscale poses a unique analytical challenge, as cells are dynamic, chemically diverse, and fragile. A case in point is the cell membrane, which is too small to be seen directly with optical microscopy and provides little observational contrast for other methods. As a consequence, nanoscale characterization of the membrane has been performed ex vivo or in the presence of exogenous labels used to enhance contrast and impart specificity. Here, we introduce an isotopic labeling strategy in the gram-positive bacterium Bacillus subtilis to investigate the nanoscale structure and organization of its plasma membrane in vivo. Through genetic and chemical manipulation of the organism, we labeled the cell and its membrane independently with specific amounts of hydrogen (H) and deuterium (D). These isotopes have different neutron scattering properties without altering the chemical composition of the cells. From neutron scattering spectra, we confirmed that the B. subtilis cell membrane is lamellar and determined that its average hydrophobic thickness is 24.3 ± 0.9 Ångstroms (Å). Furthermore, by creating neutron contrast within the plane of the membrane using a mixture of H- and D-fatty acids, we detected lateral features smaller than 40 nm that are consistent with the notion of lipid rafts. These experiments—performed under biologically relevant conditions—answer long-standing questions in membrane biology and illustrate a fundamentally new approach for systematic in vivo investigations of cell membrane structure.


Biophysical Journal | 2017

Line Tension Controls Liquid-Disordered + Liquid-Ordered Domain Size Transition in Lipid Bilayers

Rebecca D. Usery; Thais A. Enoki; Sanjula Wickramasinghe; Michael D. Weiner; Wen Chyan Tsai; Mary B. Kim; Shu Wang; Thomas Torng; David G. Ackerman; Frederick A. Heberle; John Katsaras; Gerald W. Feigenson

To better understand animal cell plasma membranes, we studied simplified models, namely four-component lipid bilayer mixtures. Here we describe the domain size transition in the region of coexisting liquid-disordered (Ld)xa0+ liquid-ordered (Lo) phases. This transition occurs abruptly in composition space with domains increasing in size by two orders of magnitude, from tens of nanometers to microns. We measured the line tension between coexisting Ld and Lo domains close to the domain size transition for a variety of lipid mixtures, finding that in every case the transition occurs at a line tension of ∼0.3 pN. A computational model incorporating line tension and dipole repulsion indicated that even small changes in line tension can result in domains growing in size by several orders of magnitude, consistent with experimental observations. We find that other properties of the coexisting Ld and Lo phases do not change significantly in the vicinity of the abrupt domain size transition.


Biophysical Journal | 2015

α-tocopherol is well designed to protect polyunsaturated phospholipids: MD simulations

Xiaoling Leng; Jacob J. Kinnun; Drew Marquardt; Mikel Ghefli; Norbert Kučerka; John Katsaras; Jeffrey Atkinson; Scott E. Feller; Stephen R. Wassall

The presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OA (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state (2)H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access the chromanol group when it locates at the surface.


Protein Expression and Purification | 2016

Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids.

Andrea N. Naranjo; Patrick M. McNeely; John Katsaras; Anne S. Robinson

The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, or DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. The studies presented in this paper also underline the importance of the proteins purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.


Journal of Physical Chemistry Letters | 2018

Anomalous Nanoscale Optoacoustic Phonon Mixing in Nematic Mesogens

Dima Bolmatov; Dmytro Soloviov; Dmitry Zav’yalov; Lewis Sharpnack; Deña M. Agra-Kooijman; Satyendra Kumar; Jiawei Zhang; Mengkun Liu; John Katsaras

Recent inelastic X-ray scattering (IXS) experiments on mesogens have revealed entirely new capabilities with regards to their nanoscale phonon-assisted heat management. Mesogens such as nematic liquid crystals (LCs) are appealing systems for study because their structure and morphology can easily be tuned. We report on Q-resolved ultra-high-resolution IXS, X-ray diffraction, and THz time-domain spectroscopy experiments combined with large-scale all-atom molecular dynamics simulations on the dynamic properties of 5CB LCs. For the first time, we observe a strong mixing of phonon excitations originating from independent in-phase and out-of-phase van-der-Waals-mediated displacement patterns. The coexistence of transverse acoustic and optical modes of 5CB LCs at near room temperature is revealed through the emergent transverse phonon gap and THz light-phonon coupling taking place within the same energy range. Furthermore, our experimental observations are supported by analysis showing correlations of spontaneous fluctuations of LCs on picosecond time scales. These findings are significant for the design of a new generation of soft molecular vibration-sensitive nanoacoustic and optomechanical applications.


Chemistry and Physics of Lipids | 2015

Biomembranes research using thermal and cold neutrons

Frederick A. Heberle; Dean A. A. Myles; John Katsaras

In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: whatever the radiation from Be may be, it has most remarkable properties. Where it concerns hydrogen-rich biological materials, the most remarkable property is the neutrons differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, imparting sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. This article describes recent biomembranes research using a variety of neutron scattering techniques.

Collaboration


Dive into the John Katsaras's collaboration.

Top Co-Authors

Avatar

Frederick A. Heberle

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Norbert Kučerka

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

Xiaolin Cheng

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan D. Nickels

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Robert F. Standaert

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianjun Pan

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Mu-Ping Nieh

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Dean A. A. Myles

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge