Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grant Hoyt is active.

Publication


Featured researches published by Grant Hoyt.


Nature Medicine | 2006

Human tissue-engineered blood vessels for adult arterial revascularization.

Nicolas L'Heureux; Nathalie Dusserre; Gerhardt Konig; Braden Victor; Paul Keire; Thomas N. Wight; Nicolas Chronos; Andrew E. Kyles; Clare R. Gregory; Grant Hoyt; Robert C. Robbins; Todd N. McAllister

There is a crucial need for alternatives to native vein or artery for vascular surgery. The clinical efficacy of synthetic, allogeneic or xenogeneic vessels has been limited by thrombosis, rejection, chronic inflammation and poor mechanical properties. Using adult human fibroblasts extracted from skin biopsies harvested from individuals with advanced cardiovascular disease, we constructed tissue-engineered blood vessels (TEBVs) that serve as arterial bypass grafts in long-term animal models. These TEBVs have mechanical properties similar to human blood vessels, without relying upon synthetic or exogenous scaffolding. The TEBVs are antithrombogenic and mechanically stable for 8 months in vivo. Histological analysis showed complete tissue integration and formation of vasa vasorum. The endothelium was confluent and positive for von Willebrand factor. A smooth muscle–specific α-actin–positive cell population developed within the TEBV, suggesting regeneration of a vascular media. Electron microscopy showed an endothelial basement membrane, elastogenesis and a complex collagen network. These results indicate that a completely biological and clinically relevant TEBV can be assembled exclusively from an individuals own cells.


Circulation | 2008

Comparison of Different Adult Stem Cell Types for Treatment of Myocardial Ischemia

Koen E.A. van der Bogt; Ahmad Y. Sheikh; Sonja Schrepfer; Grant Hoyt; Feng Cao; Katherine J. Ransohoff; Rutger-Jan Swijnenburg; Jeremy Pearl; Andrew Lee; Michael P. Fischbein; Christopher H. Contag; Robert C. Robbins; Joseph C. Wu

Background— A comparative analysis of the efficacy of different cell candidates for the treatment of heart disease remains to be described. This study is designed to evaluate the therapeutic efficacy of 4 cell types in a murine model of myocardial infarction. Methods and Results— Bone marrow mononuclear cells (MN), mesenchymal stem cells (MSC), skeletal myoblasts (SkMb), and fibroblasts (Fibro) expressing firefly luciferase (Fluc) and green fluorescence protein (GFP) were characterized by flow cytometry, bioluminescence imaging (BLI), and luminometry. Female FVB mice (n=70) underwent LAD ligation and intramyocardially received one cell type (5×105) or PBS. Cell survival was measured by BLI and by TaqMan PCR. Cardiac function was assessed by echocardiography and invasive hemodynamic measurements. Fluc expression correlated with cell number in all groups (r2>0.93). In vivo BLI revealed acute donor cell death of MSC, SkMb, and Fibro within 3 weeks after transplantation. By contrast, cardiac signals were still present after 6 weeks in the MN group, as confirmed by TaqMan PCR (P<0.01). Echocardiography showed significant preservation of fractional shortening in the MN group compared to controls (P<0.05). Measurements of left ventricular end-systolic/diastolic volumes revealed that the least amount of ventricular dilatation occurred in the MN group (P<0.05). Histology confirmed the presence of MN, although there was no evidence of transdifferentiation by donor MN into cardiomyocytes. Conclusions— This is the first study to show that compared to MSC, SkMB, and Fibro, MN exhibit a more favorable survival pattern, which translates into a more robust preservation of cardiac function.


Circulation | 2005

Novel Injectable Bioartificial Tissue Facilitates Targeted, Less Invasive, Large-Scale Tissue Restoration on the Beating Heart After Myocardial Injury

Theo Kofidis; Darren R. Lebl; Eliana C. Martinez; Grant Hoyt; Masashi Tanaka; Robert C. Robbins

Background—Implantation of bioartificial patches distorts myocardial geometry, and functional improvement of the recipient heart is usually attributed to reactive angiogenesis around the graft. With the liquid bioartificial tissue compound used in this study, we achieved targeted large-scale support of the infarcted left ventricular wall and improvement of heart function. Methods and Results—A liquid compound consisting of growth factor-free Matrigel and 106 green fluorescent protein (GFP)-positive mouse (129sv) embryonic stem cells (ESCs) was generated and injected into the area of ischemia after ligation of the left anterior descending artery in BALB/c mice (group I). Left anterior descending artery-ligated mice (group II) and mice with Matrigel (group III) or ESC treatment alone (group IV) were used as the control groups (n=5 in all groups). The hearts were harvested for histology 2 weeks later after echocardiographic assessment with a 15-MHz probe. The liquid injectable tissue solidified at body temperature and retained the geometry of the infarcted lateral wall. Immunofluorescence stains revealed voluminous GFP grafts. The quality of restoration (graft/infarct area ratio) was 45.5±10.8% in group I and 29.1±6.7% in group IV (P=0.034). ESCs expressed connexin 43 at intercellular contact sites. The mice treated with the compound had a superior heart function compared with the controls (P<0.0001 by ANOVA/Bonferroni test; group I: 27.1±5.4, group II:11.9±2.4, group III:16.2±2.8, group IV: 19.1±2.7). Conclusions—Injectable bioartificial tissue restores the heart’s geometry and function in a targeted and nondistorting fashion. This new method paves the way for novel interventional approaches to myocardial repair, using both stem cells and matrices.


Journal of the American College of Cardiology | 2009

Imaging Survival and Function of Transplanted Cardiac Resident Stem Cells

Zongjin Li; Andrew Lee; Mei Huang; Hyung J. Chun; Jaehoon Chung; Pauline Chu; Grant Hoyt; Phillip C. Yang; Jarrett Rosenberg; Robert C. Robbins; Joseph C. Wu

OBJECTIVES The goal of this study is to characterize resident cardiac stem cells (CSCs) and investigate their therapeutic efficacy in myocardial infarction by molecular imaging methods. BACKGROUND CSCs have been isolated and characterized in vitro. These cells offer a provocative method to regenerate the damaged myocardium. However, the survival kinetics and function of transplanted CSCs have not been fully elucidated. METHODS CSCs were isolated from L2G85 transgenic mice (FVB strain background) that constitutively express both firefly luciferase and enhanced green fluorescence protein reporter gene. CSCs were characterized in vitro and transplanted in vivo into murine infarction models. Multimodality noninvasive imaging techniques were used to assess CSC survival and therapeutic efficacy for restoration of cardiac function. RESULTS CSCs can be isolated from L2G85 mice, and fluorescence-activated cell sorting analysis showed expression of resident CSC markers (Sca-1, c-Kit) and mesenchymal stem cell markers (CD90, CD106). Afterwards, 5 x 10(5) CSCs (n = 30) or phosphate-buffered saline control (n = 15) was injected into the hearts of syngeneic FVB mice undergoing left anterior descending artery ligation. Bioluminescence imaging showed poor donor cell survival by week 8. Echocardiogram, invasive hemodynamic pressure-volume analysis, positron emission tomography imaging with fluorine-18-fluorodeoxyglucose, and cardiac magnetic resonance imaging demonstrated no significant difference in cardiac contractility and viability between the CSC and control group. Finally, postmortem analysis confirmed transplanted CSCs integrated with host cardiomyocytes by immunohistology. CONCLUSIONS In a mouse myocardial infarction model, Sca-1-positive CSCs provide no long-term engraftment and benefit to cardiac function as determined by multimodality imaging.


Circulation | 2006

Collagen Matrices Enhance Survival of Transplanted Cardiomyoblasts and Contribute to Functional Improvement of Ischemic Rat Hearts

Ingo Kutschka; Ian Y. Chen; Theo Kofidis; Takayasu Arai; Georges von Degenfeld; Ahmad Y. Sheikh; Stephen L. Hendry; Jeremy Pearl; Grant Hoyt; Ramachadra Sista; Phillip C. Yang; Helen M. Blau; Sanjiv S. Gambhir; Robert C. Robbins

Background— Cardiac cell transplantation is limited by poor graft viability. We aimed to enhance the survival of transplanted cardiomyoblasts using growth factor-supplemented collagen matrices. Methods and Results— H9c2 cardiomyoblasts were lentivirally transduced to express firefly luciferase and green fluorescent protein (GFP). Lewis rats underwent ligation of the left anterior descending artery (LAD) ligation to induce an anterior wall myocardial infarction. Hearts (n=9/group) were harvested and restored ex vivo with 1×106 genetically labeled H9c2 cells either in (1) saline-suspension, or seeded onto (2) collagen-matrix (Gelfoam [GF];), (3) GF/Matrigel (GF/MG), (4) GF/MG/VEGF (10 &mgr;g/mL), or (5) GF/MG/FGF (10 &mgr;g/mL). Hearts were then abdominally transplanted into syngeneic recipients (working heart model). Controls (n=6/group) underwent infarction followed by GF implantation or saline injection. Cell survival was evaluated using optical bioluminescence on days 1, 5, 8, 14, and 28 postoperatively. At 4 weeks, fractional shortening and ejection fraction were determined using echocardiography and magnetic resonance imaging, respectively. Graft characteristics were assessed by immunohistology. Bioluminescence signals on days 5, 8, and 14 were higher for GF-based grafts compared with plain H9c2 injections (P<0.03). Signals were higher for GF/MG grafts compared with GF alone (P<0.02). GFP-positive, spindle-shaped H9c2 cells were found integrated in the infarct border zones at day 28. Left ventricular (LV) function of hearts implanted with collagen-based grafts was better compared with controls (P<0.05). Vascular endothelial growth factor or fibroblast growth factor did not further improve graft survival or heart function. Conclusions— Collagen matrices enhance early survival of H9c2 cardiomyoblasts after transplantation into ischemic hearts and lead to improved LV function. Further optimization of the graft design should make restoration of large myocardial infarctions by tissue engineering approaches effective.


Transplantation | 2009

Comparison of Transplantation of Adipose Tissue- and Bone Marrow- Derived Mesenchymal Stem Cells in the Infarcted Heart

Koen E.A. van der Bogt; Sonja Schrepfer; Jin Yu; Ahmad Y. Sheikh; Grant Hoyt; Johannes A. Govaert; Christopher H. Contag; Robert C. Robbins; Joseph C. Wu

Background. Mesenchymal stem cells hold promise for cardiovascular regenerative therapy. Derivation of these cells from the adipose tissue might be easier compared with bone marrow. However, the in vivo fate and function of adipose stromal cells (ASC) in the infarcted heart has never been compared directly to bone marrow-derived mesenchymal cells (MSC). Methods. ASC and MSC were isolated from transgenic FVB mice with a &bgr;-actin promoter driving firefly luciferase and green fluorescent protein double fusion reporter gene, and they were characterized using flow cytometry, microscopy, bioluminescence imaging and luminometry. FVB mice (n=8 per group) underwent myocardial infarction followed by intramyocardial injection of 5×105 ASC, MSC, fibroblasts (Fibro, positive control), or saline (negative control). Cell survival was measured using bioluminescence imaging for 6 weeks and cardiac function was monitored by echocardiography and pressure-volume analysis. Ventricular morphology was assessed using histology. Results. ASC and MSC were CD34−, CD45−, c-Kit−, CD90+, Sca-1+, shared similar morphology and had a population doubling time of ∼2 days. Cells expressed Fluc reporter genes in a number-dependent fashion as confirmed by luminometry. After cardiac transplantation, both cell types showed drastic donor cell death within 4 to 5 weeks. Furthermore, transplantation of either cell type was not capable of preserving ventricular function and dimensions, as confirmed by pressure-volume-loops and histology. Conclusion. This is the first study comparing the in vivo behavior of both cell types in the infarcted heart. ASC and MSC do not tolerate well in the cardiac environment, resulting in acute donor cell death and a subsequent loss of cardiac function similar to control groups.


Circulation | 2009

Novel Minicircle Vector for Gene Therapy in Murine Myocardial Infarction

Mei Huang; Zhi-Ying Chen; Shijun Hu; Fangjun Jia; Zongjin Li; Grant Hoyt; Robert C. Robbins; Mark A. Kay; Joseph C. Wu

Background— Conventional plasmids for gene therapy produce low-level and short-term gene expression. In this study, we develop a novel nonviral vector that robustly and persistently expresses the hypoxia-inducible factor-1 alpha (HIF-1α) therapeutic gene in the heart, leading to functional benefits after myocardial infarction. Methods and Results— We first created minicircles (MC) carrying double-fusion reporter gene consisting of firefly luciferase and enhanced green fluorescent protein (Fluc-eGFP) for noninvasive measurement of transfection efficiency. Mouse C2C12 myoblasts and normal FVB/N mice were used for in vitro and in vivo confirmation, respectively. Bioluminescence imaging showed stable MC gene expression in the heart for >12 weeks and the activity level was 5.6±1.2-fold stronger than regular plasmid at day 4 (P<0.01). Next, we created MC carrying HIF-1α (MC-HIF-1α) therapeutic gene for treatment of myocardial infarction. Adult FVB/N mice underwent left anterior descending ligation and were injected intramyocardially with: (1) MC-HIF-1α; (2) regular plasmid carrying HIF-1α (PL-HIF-1α) as positive control; and (3) PBS as negative control (n=10/group). Echocardiographic study showed a significantly greater improvement of left ventricular ejection fraction in the MC group (51.3%±3.6%) compared to regular plasmid group (42.3%±4.1%) and saline group (30.5%±2.8%) at week 4 (P<0.05 for both). Histology demonstrated increased neoangiogenesis in both treatment groups. Finally, Western blot showed MC express >50% higher HIF-1α level than regular plasmid. Conclusion— Taken together, this is the first study to our knowledge to demonstrate that MC can significantly improve transfection efficiency, duration of transgene expression, and cardiac contractility. Given the serious drawbacks associated with most viral vectors, we believe this novel nonviral vector can be of great value for cardiac gene therapy protocols.


Circulation | 2008

Short Hairpin RNA Interference Therapy for Ischemic Heart Disease

Mei Huang; Denise A. Chan; Fangjun Jia; Xiaoyan Xie; Zongjin Li; Grant Hoyt; Robert C. Robbins; Xiaoyuan Chen; Amato J. Giaccia; Joseph C. Wu

Background— During hypoxia, upregulation of hypoxia inducible factor-1 alpha transcriptional factor can activate several downstream angiogenic genes. However, hypoxia inducible factor-1 alpha is naturally degraded by prolyl hydroxylase-2 (PHD2) protein. Here we hypothesize that short hairpin RNA (shRNA) interference therapy targeting PHD2 can be used for treatment of myocardial ischemia and this process can be followed noninvasively by molecular imaging. Methods and Results— PHD2 was cloned from mouse embryonic stem cells by comparing the homolog gene in human and rat. The best candidate shRNA sequence for inhibiting PHD2 was inserted into the pSuper vector driven by the H1 promoter followed by a separate hypoxia response element-incorporated promoter driving a firefly luciferase reporter gene. This construct was used to transfect mouse C2C12 myoblast cell line for in vitro confirmation. Compared with the control short hairpin scramble (shScramble) as control, inhibition of PHD2 increased levels of hypoxia inducible factor-1 alpha protein and several downstream angiogenic genes by >30% (P<0.01). Afterward, shRNA targeting PHD2 (shPHD2) plasmid was injected intramyocardially following ligation of left anterior descending artery in mice. Animals were randomized into shPHD2 experimental group (n=25) versus shScramble control group (n=20). Bioluminescence imaging detected plasmid-mediated transgene expression for 4 to 5 weeks. Echocardiography showed the shPHD2 group had improved fractional shortening compared with the shScramble group at Week 4 (33.7%±1.9% versus 28.4%±2.8%; P<0.05). Postmortem analysis showed increased presence of small capillaries and venules in the infarcted zones by CD31 staining. Finally, Western blot analysis of explanted hearts also confirmed that animals treated with shPHD2 had significantly higher levels of hypoxia inducible factor-1 alpha protein. Conclusions— This is the first study to image the biological role of shRNA therapy for improving cardiac function. Inhibition of PHD2 by shRNA led to significant improvement in angiogenesis and contractility by in vitro and in vivo experiments. With further validation, the combination of shRNA therapy and molecular imaging can be used to track novel cardiovascular gene therapy applications in the future.


Circulation | 2006

Adenoviral Human BCL-2 Transgene Expression Attenuates Early Donor Cell Death After Cardiomyoblast Transplantation Into Ischemic Rat Hearts

Ingo Kutschka; Theo Kofidis; Ian Y. Chen; Georges von Degenfeld; Monika Zwierzchoniewska; Grant Hoyt; Takayasu Arai; Darren R. Lebl; Stephen L. Hendry; Ahmad Y. Sheikh; David T. Cooke; Andrew J. Connolly; Helen M. Blau; Sanjiv S. Gambhir; Robert C. Robbins

Background— Cell transplantation for myocardial repair is limited by early cell death. Gene therapy with human Bcl-2 (hBcl-2) has been shown to attenuate apoptosis in the experimental setting. Therefore, we studied the potential benefit of hBcl-2 transgene expression on the survival of cardiomyoblast grafts in ischemic rat hearts. Methods and Results— H9c2 rat cardiomyoblasts were genetically modified to express both firefly luciferase and green fluorescent protein (mH9c2). The cells were then transduced with adenovirus carrying hBcl-2 (AdCMVhBcl-2/mH9c2). Lewis rats underwent ligation of the left anterior descending artery (LAD) to induce a sizable left ventricular (LV) infarct. Hearts were explanted and the infarcted region was restored using collagen matrix (CM) seeded with 1×106 mH9c2 cells (n=9) or AdCMVhBcl-2/mH9c2 cells (n=9). Control animals received CM alone (n=6) or no infarct (n=6). Restored hearts were transplanted into the abdomen of syngeneic recipients in a “working heart” model. Cell survival was evaluated using optical bioluminescence imaging on days 1, 5, 8, 14, and 28 after surgery. The left heart function was assessed 4 weeks postoperatively using echocardiography and magnetic resonance imaging. During 4 weeks after surgery, the optical imaging signal for the AdCMVhBCL2/mH9c2 group was significantly (P<0.05) higher than that of the mH9c2-control group. Both grafts led to better fractional shortening (AdCMVhBcl-2/mH9c2: 0.21±0.03; mH9c2: 0.21±0.04; control: 0.15±0.03; P=0.04) and ejection fraction (AdCMVhBcl-2/mH9c2: 47.0±6.2; mH9c2: 48.7±6.1; control: 34.3±6.0; P=0.02) compared with controls. Importantly, no malignant cells were found in postmortem histology. Conclusion— Transduction of mH9c2 cardiomyoblasts with AdCMVhBcl-2 increased graft survival in ischemic rat myocardium without causing malignancies. Both AdCMVhBcl-2/mH9c2 and mH9c2 grafts improved LV function.


Circulation-cardiovascular Imaging | 2010

Timing of bone marrow cell delivery has minimal effects on cell viability and cardiac recovery after myocardial infarction.

Rutger-Jan Swijnenburg; Johannes A. Govaert; Koen E.A. van der Bogt; Jeremy Pearl; Mei Huang; William Stein; Grant Hoyt; Hannes Vogel; Christopher H. Contag; Robert C. Robbins; Joseph C. Wu

Background—Despite ongoing clinical trials, the optimal time for delivery of bone marrow mononuclear cells (BMCs) after myocardial infarction is unclear. We compared the viability and effects of transplanted BMCs on cardiac function in the acute and subacute inflammatory phases of myocardial infarction. Methods and Results—The time course of acute inflammatory cell infiltration was quantified by FACS analysis of enzymatically digested hearts of FVB mice (n=12) after left anterior descending artery ligation. Mac-1+Gr-1high neutrophil infiltration peaked at day 4. BMCs were harvested from transgenic FVB mice expressing firefly luciferase (Fluc) and green fluorescent protein (GFP). Afterward, 2.5×106 BMCs were injected into the left ventricle of wild-type FVB mice either immediately (acute BMC) or 7 days (subacute BMC) after myocardial infarction, or after a sham procedure (n=8 per group). In vivo bioluminescence imaging showed an early signal increase in both BMC groups at day 7, followed by a nonsignificant trend (P=0.203) toward improved BMC survival in the subacute BMC group that persisted until the bioluminescence imaging signal reached background levels after 42 days. Compared with controls (myocardial infarction+saline injection), echocardiography showed a significant preservation of fractional shortening at 4 weeks (acute BMC versus saline; P<0.01) and 6 weeks (both BMC groups versus saline; P<0.05) but no significant differences between the 2 BMC groups. FACS analysis of BMC-injected hearts at day 7 revealed that GFP+ BMCs expressed hematopoietic (CD45, Mac-1, Gr-1), minimal progenitor (Sca-1, c-kit), and no endothelial (CD133, Flk-1) or cardiac (Trop-T) cell markers. Conclusion—Timing of BMC delivery has minimal effects on intramyocardial retention and preservation of cardiac function. In general, there is poor long-term engraftment and BMCs tend to adopt inflammatory cell phenotypes.

Collaboration


Dive into the Grant Hoyt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theo Kofidis

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Ingo Kutschka

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge