Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grant J. Williamson is active.

Publication


Featured researches published by Grant J. Williamson.


Nature Communications | 2015

Climate-induced variations in global wildfire danger from 1979 to 2013

W. Matt Jolly; Mark A. Cochrane; Patrick H. Freeborn; Zachary A. Holden; Timothy J. Brown; Grant J. Williamson; David M. J. S. Bowman

Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km2 (25.3%) of the Earths vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by long fire weather seasons (>1.0 σ above the historical mean) and an increased global frequency of long fire weather seasons across 62.4 million km2 (53.4%) during the second half of the study period. If these fire weather changes are coupled with ignition sources and available fuel, they could markedly impact global ecosystems, societies, economies and climate.


Global Change Biology | 2014

Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests

David M. J. S. Bowman; Brett P. Murphy; Dominic L. J. Neyland; Grant J. Williamson; Lynda D. Prior

Obligate seeder trees requiring high-severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long-lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High-severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high-severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest.


PLOS ONE | 2014

The Macroecology of Airborne Pollen in Australian and New Zealand Urban Areas

Simon Haberle; David M. J. S. Bowman; Rewi M. Newnham; Fay H. Johnston; Paul J. Beggs; Jeroen Buters; Bradley C. Campbell; Bircan Erbas; I. D. Godwin; Brett J. Green; Alfredo R. Huete; Alison K. Jaggard; Danielle E. Medek; F. Murray; Ed Newbigin; Michel Thibaudon; Don Vicendese; Grant J. Williamson; Janet M. Davies

The composition and relative abundance of airborne pollen in urban areas of Australia and New Zealand are strongly influenced by geographical location, climate and land use. There is mounting evidence that the diversity and quality of airborne pollen is substantially modified by climate change and land-use yet there are insufficient data to project the future nature of these changes. Our study highlights the need for long-term aerobiological monitoring in Australian and New Zealand urban areas in a systematic, standardised, and sustained way, and provides a framework for targeting the most clinically significant taxa in terms of abundance, allergenic effects and public health burden.


Nature Ecology and Evolution | 2017

Human exposure and sensitivity to globally extreme wildfire events

David M. J. S. Bowman; Grant J. Williamson; John T. Abatzoglou; Crystal A. Kolden; Mark A. Cochrane; Alistair M. S. Smith

Extreme wildfires have substantial economic, social and environmental impacts, but there is uncertainty whether such events are inevitable features of the Earth’s fire ecology or a legacy of poor management and planning. We identify 478 extreme wildfire events defined as the daily clusters of fire radiative power from MODIS, within a global 10 × 10 km lattice, between 2002 and 2013, which exceeded the 99.997th percentile of over 23 million cases of the ΣFRP 100 km−2 in the MODIS record. These events are globally distributed across all flammable biomes, and are strongly associated with extreme fire weather conditions. Extreme wildfire events reported as being economically or socially disastrous (n = 144) were concentrated in suburban areas in flammable-forested biomes of the western United States and southeastern Australia, noting potential biases in reporting and the absence of globally comprehensive data of fire disasters. Climate change projections suggest an increase in days conducive to extreme wildfire events by 20 to 50% in these disaster-prone landscapes, with sharper increases in the subtropical Southern Hemisphere and European Mediterranean Basin.


Ecology and Evolution | 2015

Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity

Clay Trauernicht; Barry W. Brook; Brett P. Murphy; Grant J. Williamson; David M. J. S. Bowman

Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance.


Tropical Medicine & International Health | 2008

Predictive indicators for Ross River virus infection in the Darwin area of tropical northern Australia, using long-term mosquito trapping data

Susan P. Jacups; Peter I Whelan; Peter Markey; Sam J. Cleland; Grant J. Williamson; Bart J. Currie

Objectives  To describe the epidemiology of Ross River virus (RRV) infection in the endemic Darwin region of tropical northern Australia and to develop a predictive model for RRV infections.


Ecology and Evolution | 2012

Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years

David Y. P. Tng; Brett P. Murphy; Ellen Weber; Gregor J. Sanders; Grant J. Williamson; Jeanette Kemp; David M. J. S. Bowman

Tropical rain forest expansion and savanna woody vegetation thickening appear to be a global trend, but there remains uncertainty about whether there is a common set of global drivers. Using geographic information techniques, we analyzed aerial photography of five areas in the humid tropics of northeastern Queensland, Australia, taken in the 1950s and 2008, to determine if changes in rain forest extent match those reported for the Australian monsoon tropics using similar techniques. Mapping of the 1950s aerial photography showed that of the combined study area (64,430 ha), 63% was classified as eucalypt forests/woodland and 37% as rain forest. Our mapping revealed that although most boundaries remained stable, there was a net increase of 732 ha of the original rain forest area over the study period, and negligible conversion of rain forest to eucalypt forest/woodland. Statistical modeling, controlling for spatial autocorrelation, indicated distance from preexisting rain forest as the strongest determinant of rain forest expansion. Margin extension had a mean rate across the five sites of 0.6 m per decade. Expansion was greater in tall open forest types but also occurred in shorter, more flammable woodland vegetation types. No correlations were detected with other local variables (aspect, elevation, geology, topography, drainage). Using a geographically weighted mean rate of rain forest margin extension across the whole region, we predict that over 25% of tall open forest (a forest type of high conservation significance) would still remain after 2000 years of rain forest expansion. This slow replacement is due to the convoluted nature of the rain forest boundary and the irregular shape of the tall open forest patches. Our analyses point to the increased concentration of atmospheric CO2 as the most likely global driver of indiscriminate rain forest expansion occurring in northeastern Australia, by increasing tree growth and thereby overriding the effects of fire disturbance.


PLOS ONE | 2012

The relationship between particulate pollution levels in Australian cities, meteorology, and landscape fire activity detected from MODIS hotspots.

Owen F. Price; Grant J. Williamson; Sarah B. Henderson; Fay H. Johnston; David M. J. S. Bowman

Smoke from bushfires is an emerging issue for fire managers because of increasing evidence for its public health effects. Development of forecasting models to predict future pollution levels based on the relationship between bushfire activity and current pollution levels would be a useful management tool. As a first step, we use daily thermal anomalies detected by the MODIS Active Fire Product (referred to as “hotspots”), pollution concentrations, and meteorological data for the years 2002 to 2008, to examine the statistical relationship between fire activity in the landscapes and pollution levels around Perth and Sydney, two large Australian cities. Resultant models were statistically significant, but differed in their goodness of fit and the distance at which the strength of the relationship was strongest. For Sydney, a univariate model for hotspot activity within 100 km explained 24% of variation in pollution levels, and the best model including atmospheric variables explained 56% of variation. For Perth, the best radius was 400 km, explaining only 7% of variation, while the model including atmospheric variables explained 31% of the variation. Pollution was higher when the atmosphere was more stable and in the presence of on-shore winds, whereas there was no effect of wind blowing from the fires toward the pollution monitors. Our analysis shows there is a good prospect for developing region-specific forecasting tools combining hotspot fire activity with meteorological data.


International Journal of Wildland Fire | 2013

Satellite-based comparison of fire intensity and smoke plumes from prescribed fires and wildfires in south-eastern Australia

Grant J. Williamson; Owen F. Price; Sarah B. Henderson; David M. J. S. Bowman

Smoke pollution from wildfires can adversely affect human health, and there is uncertainty about the amount of smoke pollution caused by prescribed v. wildfires, a problem demanding a landscape perspective given that air quality monitoring is sparse outside of urban airsheds. The primary objective was to assess differences in fire intensity and smoke plume area between prescribed fires and wildfires around Melbourne and Sydney, Australia. We matched thermal anomaly satellite data to databases of fires in forests surrounding both cities. For each matched fire we determined hotspot count and quantified their intensity using the fire radiative power (FRP) measurement. Smoke plumes were mapped using MODIS true colour images. Wildfires had more extreme fire intensity values than did prescribed burns and the mean size of wildfire plumes was six times greater than of prescribed fire plumes for both cities. Statistical modelling showed that the horizontal area covered by smoke plumes could be predicted by hotspot count and sum of FRP, with differences between cities and fire type. Smoke plumes from both fire types reached both urban areas, and particulate pollution was higher on days affected by smoke plumes. Our results suggested that prescribed fires produced smaller smoke plume areas than did wildfires in two different flammable landscapes. Smoke plume and FRP data, combined with air pollution data from static monitors, can be used to improve smoke management for human health.


Journal of The Air & Waste Management Association | 2011

Creating an Integrated Historical Record of Extreme Particulate Air Pollution Events in Australian Cities from 1994 to 2007

Fay H. Johnston; Ivan Hanigan; Sarah B. Henderson; Geoffrey Morgan; Talia Portner; Grant J. Williamson; David M. J. S. Bowman

ABSTRACT Epidemiological studies of exposure to vegetation fire smoke are often limited by the availability of accurate exposure data. This paper describes a systematic framework for retrospectively identifying the cause of air pollution events to facilitate a long, multicenter analysis of the public health effects of vegetation fire smoke pollution in Australia. Pollution events were statistically defined as any day at or above the 95th percentile of the 24-hr average concentration of particulate matter (PM). These were identified for six cities from three distinct ecoclimatic regions of Australia. The dates of each event were then crosschecked against a range of information sources, including online newspaper archives, government and research agency records, satellite imagery, and aerosol optical thickness measures to identify the cause for the excess particulate pollution. Pollution events occurred most frequently during summer for cities in sub-tropical and arid regions and during winter for cities in temperate regions. A cause for high PM on 67% of days examined in the city of Sydney was found, and 94% of these could be attributed to landscape fire smoke. Results were similar for cities in other subtropical and arid locations. Identification of the cause of pollution events was much lower in colder temperate regions where fire activity is less frequent. Bushfires were the most frequent cause of extreme pollution events in cities located in subtropical and arid regions of Australia. Although identification of pollution episodes was greatly improved by the use of multiple sources of information, satellite imagery was the most useful tool for identifying bushfire smoke pollution events. IMPLICATIONS Landscape fire smoke is an episodic and increasingly important environmental hazard for human populations. However, the health effects attributable to landscape fire smoke remain uncertain, partially because of the challenges associated with exposure assessment. This paper describes a systematic framework for retrospectively identifying the cause of air pollution events to facilitate a long, multicenter analysis of the public health effects of vegetation fire smoke pollution in Australia.

Collaboration


Dive into the Grant J. Williamson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brett P. Murphy

Charles Darwin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Cochrane

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar

Sarah B. Henderson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge