Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett P. Murphy is active.

Publication


Featured researches published by Brett P. Murphy.


Ecology Letters | 2012

What controls the distribution of tropical forest and savanna

Brett P. Murphy; David M. J. S. Bowman

Forest and savanna biomes dominate the tropics, yet factors controlling their distribution remain poorly understood. Climate is clearly important, but extensive savannas in some high rainfall areas suggest a decoupling of climate and vegetation. In some situations edaphic factors are important, with forest often associated with high nutrient availability. Fire also plays a key role in limiting forest, with fire exclusion often causing a switch from savanna to forest. These observations can be captured by a broad conceptual model with two components: (1) forest and savanna are alternative stable states, maintained by tree cover-fire feedbacks, (2) the interaction between tree growth rates and fire frequency limits forest development; any factor that increases growth (e.g. elevated availability of water, nutrients, CO(2)), or decreases fire frequency, will favour canopy closure. This model is consistent with the range of environmental variables correlated with forest distribution, and with the current trend of forest expansion, likely driven by increasing CO(2) concentrations. Resolving the drivers of forest and savanna distribution has moved beyond simple correlative studies that are unlikely to establish ultimate causation. Experiments using Dynamic Global Vegetation Models, parameterised with measurements from each continent, provide an important tool for understanding the controls of these systems.


Ecosphere | 2011

How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness

Michael J. Lawes; Hylton Adie; Jeremy Russell-Smith; Brett P. Murphy; Jeremy J. Midgley

To recruit to reproductive size in fire-prone savannas, juvenile trees must avoid stem mortality (topkill) by fire. Theory suggests they either grow tall, raising apical buds above the flames, or wide, buffering the stem from fire. However, growing tall or wide is of no advantage without stem protection from fire. In Litchfield National Park, northern Australia, we explored the importance of bark thickness to stem survival following fire in a eucalypt-dominated tropical savanna. We measured bark thickness, prefire height, stem diameter and resprouting responses of small stems under conditions of low to moderate fire intensity. Fire induced mortality was low (<10%), topkill was uncommon (<11% of 5 m to 37% of 1 m tall stems) and epicormic resprouting was common. Topkill was correlated only with absolute bark thickness and not with stem height or width. Thus, observed height and diameter growth responses of small stems are likely different pathways to achieving bark thick enough to protect buds and the vascular cambium. Juvenile height was traded off against the cost of thick bark, so that wide stems were short with thicker bark for a given height. The fire resilience threshold for bark thickness differed between tall (4–5 mm) and wide individuals (8–9 mm), yet tall stems had lower PTopkill for a given bark thickness. Trends in PTopkill reflected eucalypt versus non-eucalypt differences. Eucalypts had thinner bark than non-eucalypts but lower PTopkill. With deeply embedded epicormic buds eucalypts do not need thick bark to protect buds and can allocate resources to height growth. Our data suggest the only ‘strategy for avoiding topkill in fire-prone systems is to optimise bark thickness to maximise stem bud and cambium protection. Thus, escape height is the height at which bark protects the stem and a wide stem per se is insufficient protection from fire without thick bark. Consequently, absolute bark thickness is crucial to explanations of species differences in topkill, resprouting response and tree community composition in fire-prone savannas. Bark thickness and the associated mechanism of bud protection offer a proximate explanation for the dominance of eucalypts in Australian tropical savannas.


Global Change Biology | 2017

Savanna woody encroachment is widespread across three continents.

Nicola Stevens; Caroline E. R. Lehmann; Brett P. Murphy; Giselda Durigan

Tropical savannas are a globally extensive biome prone to rapid vegetation change in response to changing environmental conditions. Via a meta-analysis, we quantified savanna woody vegetation change spanning the last century. We found a global trend of woody encroachment that was established prior the 1980s. However, there is critical regional variation in the magnitude of encroachment. Woody cover is increasing most rapidly in the remaining uncleared savannas of South America, most likely due to fire suppression and land fragmentation. In contrast, Australia has experienced low rates of encroachment. When accounting for land use, African savannas have a mean rate annual woody cover increase two and a half times that of Australian savannas. In Africa, encroachment occurs across multiple land uses and is accelerating over time. In Africa and Australia, rising atmospheric CO2 , changing land management and rainfall are likely causes. We argue that the functional traits of each woody flora, specifically the N-fixing ability and architecture of woody plants, are critical to predicting encroachment over the next century and that African savannas are at high risk of widespread vegetation change.


Global Change Biology | 2014

Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests

David M. J. S. Bowman; Brett P. Murphy; Dominic L. J. Neyland; Grant J. Williamson; Lynda D. Prior

Obligate seeder trees requiring high-severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long-lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High-severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high-severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest.


Frontiers in Ecology and the Environment | 2013

Forest fire management, climate change, and the risk of catastrophic carbon losses

David M. J. S. Bowman; Brett P. Murphy; Mathias Boer; Ross A. Bradstock; Geoffrey J. Cary; Mark A. Cochrane; Rodderick J Fensham; Meg A. Krawchuk; Owen F. Price; Richard J. Williams

Approaches to management of fireprone forests are undergoing rapid change, driven by recognition that technological attempts to subdue fire at large scales (fire suppression) are necologically and economically unsustainable. However, our current framework for intervention excludes the full scope of the fire management problem within the broader context of fire−vegetation−climate interactions. Climate change may already be causing unprecedented fire activity, and even if current fires are within the historical range of variability, models predict that current fire management problems will be compounded by more frequent extreme nfire-conducive weather conditions (eg Fried et al. 2004). Concern about climate change has also made the mitigation of greenhouse-gas (GHG) emissions and increased carbon (C) storage a priority for forest managers.


Landscape Ecology | 2010

Has global environmental change caused monsoon rainforests to expand in the Australian monsoon tropics

David M. J. S. Bowman; Brett P. Murphy; Daniel S. Banfai

A large research program in the Australian monsoon tropics has concluded that monsoon rainforests have expanded within the savanna matrix, a trend that has been emulated throughout the tropics worldwide. The driver of the northern Australian trend was not resolved, but it was suggested to be linked to a long-term trend towards wetter climates, atmospheric CO2 enrichment, and changed fire regimes. We review these findings with particular consideration of its analytical and evidentiary basis and plausibility of the global change hypothesis. Field validation has largely demonstrated that the aerial photographic technique that underpinned the previous research is reliable enough to detect rainforest expansion. Statistical modelling demonstrated that the expansion is related to sites with regionally low fire activity, although models are of low explanatory power reflecting the sketchy historical records of fire and feral animal impacts. Field studies show that current fire regimes adjacent to expanding rainforest patches are causing populations of the native conifer Callitris intratropica, an obligate seeder, to crash. Therefore, it is unlikely that changes in fire regimes, which have been deleterious to other fire-sensitive taxa and plant communities in the region, are responsible for the rainforest expansion. We conclude that the expansion of monsoon rainforests is most plausibly linked to the current wetting trend or elevated CO2 concentration. Increases in either water availability or CO2 concentration can potentially overwhelm the negative feedback between fire and rainforest cover that is responsible for the meta-stability of monsoon rainforest boundaries. However, further research at the continental scale, using aerial photography, tree rings and other proxies, is required to evaluate this hypothesis.


Philosophical Transactions of the Royal Society B | 2016

Pyrodiversity is the coupling of biodiversity and fire regimes in food webs.

David M. J. S. Bowman; George L. W. Perry; Steve I. Higgins; Christopher N. Johnson; Samuel D. Fuhlendorf; Brett P. Murphy

Fire positively and negatively affects food webs across all trophic levels and guilds and influences a range of ecological processes that reinforce fire regimes, such as nutrient cycling and soil development, plant regeneration and growth, plant community assembly and dynamics, herbivory and predation. Thus we argue that rather than merely describing spatio-temporal patterns of fire regimes, pyrodiversity must be understood in terms of feedbacks between fire regimes, biodiversity and ecological processes. Humans shape pyrodiversity both directly, by manipulating the intensity, severity, frequency and extent of fires, and indirectly, by influencing the abundance and distribution of various trophic guilds through hunting and husbandry of animals, and introduction and cultivation of plant species. Conceptualizing landscape fire as deeply embedded in food webs suggests that the restoration of degraded ecosystems requires the simultaneous careful management of fire regimes and native and invasive plants and animals, and may include introducing new vertebrates to compensate for extinctions that occurred in the recent and more distant past. This article is part of the themed issue ‘The interaction of fire and mankind’.


Science of The Total Environment | 2015

A synthesis of postfire recovery traits of woody plants in Australian ecosystems

Peter J. Clarke; Michael J. Lawes; Brett P. Murphy; Jeremy Russell-Smith; Catherine E. M. Nano; Ross A. Bradstock; Neal J. Enright; Joseph B. Fontaine; Carl R. Gosper; Ian J. Radford; Jeremy J. Midgley; Richard M. Gunton

Postfire resprouting and recruitment from seed are key plant life-history traits that influence population dynamics, community composition and ecosystem function. Species can have one or both of these mechanisms. They confer resilience, which may determine community composition through differential species persistence after fire. To predict ecosystem level responses to changes in climate and fire conditions, we examined the proportions of these plant fire-adaptive traits among woody growth forms of 2880 taxa, in eight fire-prone ecosystems comprising ~87% of Australias land area. Shrubs comprised 64% of the taxa. More tree (>84%) than shrub (~50%) taxa resprouted. Basal, epicormic and apical resprouting occurred in 71%, 22% and 3% of the taxa, respectively. Most rainforest taxa (91%) were basal resprouters. Many trees (59%) in frequently-burnt eucalypt forest and savanna resprouted epicormically. Although crown fire killed many mallee (62%) and heathland (48%) taxa, fire-cued seeding was common in these systems. Postfire seeding was uncommon in rainforest and in arid Acacia communities that burnt infrequently at low intensity. Resprouting was positively associated with ecosystem productivity, but resprouting type (e.g. basal or epicormic) was associated with local scale fire activity, especially fire frequency. Although rainforest trees can resprout they cannot recruit after intense fires and may decline under future fires. Semi-arid Acacia communities would be susceptible to increasing fire frequencies because they contain few postfire seeders. Ecosystems dominated by obligate seeders (mallee, heath) are also susceptible because predicted shorter inter-fire intervals will prevent seed bank accumulation. Savanna may be resilient to future fires because of the adaptive advantage of epicormic resprouting among the eucalypts. The substantial non-resprouting shrub component of shrublands may decline, but resilient Eucalyptus spp. will continue to dominate under future fire regimes. These patterns of resprouting and postfire seeding provide new insights to ecosystem assembly, resilience and vulnerability to changing fire regimes on this fire-prone continent.


Ecology and Evolution | 2015

Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity

Clay Trauernicht; Barry W. Brook; Brett P. Murphy; Grant J. Williamson; David M. J. S. Bowman

Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance.


Aob Plants | 2013

Conservative water management in the widespread conifer genus Callitris

Timothy J. Brodribb; David M. J. S. Bowman; Pauline F. Grierson; Brett P. Murphy; Scott Nichols; Lynda D. Prior

How plants manage their water use in seasonally dry environments is a major component of each individual species ecology. We examined closely related species of a highly successful Australian conifer genus, Callitris, to determine whether species growing under contrasting climates showed adaptive specialization in the way they used water. Sampling 4 Callitris species growing across a large climatic range we found that each exhibited a similar strategy of linking growth very tightly with rainfall events, and surviving dry periods by resisting damage to their water transport system. This strategy is similar to the Junipers of the Northern Hemisphere, and requires a cavitation-resistant xylem.

Collaboration


Dive into the Brett P. Murphy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Cochrane

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar

Sarah Legge

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard J. Williams

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge