Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grazia Caforio is active.

Publication


Featured researches published by Grazia Caforio.


The Journal of Neuroscience | 2006

Additive Effects of Genetic Variation in Dopamine Regulating Genes on Working Memory Cortical Activity in Human Brain

Alessandro Bertolino; Giuseppe Blasi; Valeria Latorre; Valeria Rubino; Antonio Rampino; Lorenzo Sinibaldi; Grazia Caforio; Vittoria Petruzzella; Antonio Pizzuti; Tommaso Scarabino; Marcello Nardini; Daniel R. Weinberger; Bruno Dallapiccola

Functional polymorphisms in the catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) genes modulate dopamine inactivation, which is crucial for determining neuronal signal-to-noise ratios in prefrontal cortex during working memory. We show that the COMT Met158 allele and the DAT 3′ variable number of tandem repeat 10-repeat allele are independently associated in healthy humans with more focused neuronal activity (as measured with blood oxygen level-dependent functional magnetic resonance imaging) in the working memory cortical network, including the prefrontal cortex. Moreover, subjects homozygous for the COMT Met allele and the DAT 10-repeat allele have the most focused response, whereas the COMT Val and the DAT 9-repeat alleles have the least. These results demonstrate additive genetic effects of genes regulating dopamine signaling on specific neuronal networks subserving working memory.


Nature Medicine | 2009

A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia

Stephen J. Huffaker; Jingshan Chen; Feng Yang; Venkata S. Mattay; Barbara K. Lipska; Thomas M. Hyde; Jian Song; Dan Rujescu; Ina Giegling; Karine Mayilyan; Morgan J. Proust; Armen Soghoyan; Grazia Caforio; Joseph H. Callicott; Alessandro Bertolino; Andreas Meyer-Lindenberg; Jay Chang; Yuanyuan Ji; Michael F. Egan; Terry E. Goldberg; Joel E. Kleinman; Bai Lu; Daniel R. Weinberger

Organized neuronal firing is crucial for cortical processing and is disrupted in schizophrenia. Using rapid amplification of 5′ complementary DNA ends in human brain, we identified a primate-specific isoform (3.1) of the ether-a-go-go–related K+ channel KCNH2 that modulates neuronal firing. KCNH2-3.1 messenger RNA levels are comparable to full-length KCNH2 (1A) levels in brain but three orders of magnitude lower in heart. In hippocampus from individuals with schizophrenia, KCNH2-3.1 expression is 2.5-fold greater than KCNH2-1A expression. A meta-analysis of five clinical data sets (367 families, 1,158 unrelated cases and 1,704 controls) shows association of single nucleotide polymorphisms in KCNH2 with schizophrenia. Risk-associated alleles predict lower intelligence quotient scores and speed of cognitive processing, altered memory-linked functional magnetic resonance imaging signals and increased KCNH2-3.1 mRNA levels in postmortem hippocampus. KCNH2-3.1 lacks a domain that is crucial for slow channel deactivation. Overexpression of KCNH2-3.1 in primary cortical neurons induces a rapidly deactivating K+ current and a high-frequency, nonadapting firing pattern. These results identify a previously undescribed KCNH2 channel isoform involved in cortical physiology, cognition and psychosis, providing a potential new therapeutic drug target.


Biological Psychiatry | 2006

Prefrontal-hippocampal coupling during memory processing is modulated by COMT val158met genotype.

Alessandro Bertolino; Valeria Rubino; Giuseppe Blasi; Valeria Latorre; Leonardo Fazio; Grazia Caforio; Vittoria Petruzzella; Bhaskar Kolachana; Ahmad R. Hariri; Andreas Meyer-Lindenberg; Marcello Nardini; Daniel R. Weinberger; Tommaso Scarabino

BACKGROUND Studies in humans and in animals have demonstrated that a network of brain regions is involved in performance of declarative and recognition memory tasks. This network includes the hippocampal formation (HF) as well as the ventrolateral prefrontal cortex (VLPFC). Studies in animals have suggested that the relationship between these brain regions is strongly modulated by dopamine. METHODS Using fMRI in healthy humans matched for a series of demographic and genetic variables, we studied the effect of the COMT val158met polymorphism on function of HF and VLPFC as well as on their functional coupling during recognition memory. RESULTS The COMT Val allele was associated with: relatively poorer performance at retrieval; reduced recruitment of neuronal resources in HF and increased recruitment in VLPFC during both encoding and retrieval; and unfavorable functional coupling between these two regions at retrieval. Moreover, functional coupling during retrieval was predictive of behavioral accuracy. CONCLUSIONS These results shed new light on individual differences in responsivity and connectivity between HF and VLPFC related to genetic modulation of dopamine, a mechanism accounting at least in part for individual differences in recognition memory performance.


Neuropsychopharmacology | 2010

Treatment with Olanzapine is associated with modulation of the default mode network in patients with schizophrenia

Giuseppe Blasi; Leonardo Fazio; Grazia Caforio; Paolo Taurisano; Raffaella Romano; Annabella Di Giorgio; Barbara Gelao; Luciana Lo Bianco; Apostolos Papazacharias; Teresa Popolizio; Marcello Nardini; Alessandro Bertolino

Earlier studies have shown widespread alterations of functional connectivity of various brain networks in schizophrenia, including the default mode network (DMN). The DMN has also an important role in the performance of cognitive tasks. Furthermore, treatment with second-generation antipsychotic drugs may ameliorate to some degree working memory (WM) deficits and related brain activity. The aim of this study was to evaluate the effects of treatment with olanzapine monotherapy on functional connectivity among brain regions of the DMN during WM. Seventeen patients underwent an 8-week prospective study and completed two functional magnetic resonance imaging (fMRI) scans at 4 and 8 weeks of treatment during the performance of the N-back WM task. To control for potential repetition effects, 19 healthy controls also underwent two fMRI scans at a similar time interval. We used spatial group-independent component analysis (ICA) to analyze fMRI data. Relative to controls, patients with schizophrenia had reduced connectivity strength within the DMN in posterior cingulate, whereas it was greater in precuneus and inferior parietal lobule. Treatment with olanzapine was associated with increases in DMN connectivity with ventromedial prefrontal cortex, but not in posterior regions of DMN. These results suggest that treatment with olanzapine is associated with the modulation of DMN connectivity in schizophrenia. In addition, our findings suggest critical functional differences in the regions of DMN.


Brain | 2009

Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia

Alessandro Bertolino; Leonardo Fazio; Grazia Caforio; Giuseppe Blasi; Antonio Rampino; Raffaella Romano; Annabella Di Giorgio; Paolo Taurisano; Audrey C. Papp; Julia Pinsonneault; Danxin Wang; Marcello Nardini; Teresa Popolizio; Wolfgang Sadee

Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case-control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.


European Journal of Neuroscience | 2008

Association of the Ser704Cys DISC1 polymorphism with human hippocampal formation gray matter and function during memory encoding

Annabella Di Giorgio; Giuseppe Blasi; Antonio Rampino; Apostolos Papazacharias; Francesco Gambi; Raffaella Romano; Grazia Caforio; Miriam Rizzo; Valeria Latorre; Teresa Popolizio; Bhaskar Kolachana; Joseph H. Callicott; Marcello Nardini; Daniel R. Weinberger; Alessandro Bertolino

A common nonsynonymous single nucleotide polymorphism leading to a serine‐to‐cysteine substitution at amino acid 704 (Ser704Cys) in the DISC1 protein sequence has been recently associated with schizophrenia and with specific hippocampal abnormalities. Here, we used multimodal neuroimaging to investigate in a large sample of healthy subjects the putative association of the Ser704Cys DISC1 polymorphism with in vivo brain phenotypes including hippocampal formation (HF) gray matter volume and function (as assessed with functional MRI) as well as HF functional coupling with the neural network engaged during encoding of recognition memory. Individuals homozygous for DISC1 Ser allele relative to carriers of the Cys allele showed greater gray matter volume in the HF. Further, Ser/Ser subjects exhibited greater engagement of the HF together with greater HF–dorsolateral prefrontal cortex functional coupling during memory encoding, in spite of similar behavioral performance. These findings consistently support the notion that Ser704Cys DISC1 polymorphism is physiologically relevant. Moreover, they support the hypothesis that genetic variation in DISC1 may affect the risk for schizophrenia by modifying hippocampal gray matter and function.


The Journal of Neuroscience | 2009

Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans

Alessandro Bertolino; Leonardo Fazio; Annabella Di Giorgio; Giuseppe Blasi; Raffaella Romano; Paolo Taurisano; Grazia Caforio; Lorenzo Sinibaldi; Gianluca Ursini; Teresa Popolizio; Emanuele Tirotta; Audrey C. Papp; Bruno Dallapiccola; Emiliana Borrelli; Wolfgang Sadee

Dopamine modulation of neuronal activity during memory tasks identifies a nonlinear inverted-U shaped function. Both the dopamine transporter (DAT) and dopamine D2 receptors (encoded by DRD2) critically regulate dopamine signaling in the striatum and in prefrontal cortex during memory. Moreover, in vitro studies have demonstrated that DAT and D2 proteins reciprocally regulate each other presynaptically. Therefore, we have evaluated the genetic interaction between a DRD2 polymorphism (rs1076560) causing reduced presynaptic D2 receptor expression and the DAT 3′-VNTR variant (affecting DAT expression) in a large sample of healthy subjects undergoing blood oxygenation level-dependent (BOLD)-functional magnetic resonance imaging (MRI) during memory tasks and structural MRI. Results indicated a significant DRD2/DAT interaction in prefrontal cortex and striatum BOLD activity during both working memory and encoding of recognition memory. The differential effect on BOLD activity of the DAT variant was mostly manifest in the context of the DRD2 allele associated with lower presynaptic expression. Similar results were also evident for gray matter volume in caudate. These interactions describe a nonlinear relationship between compound genotypes and brain activity or gray matter volume. Complementary data from striatal protein extracts from wild-type and D2 knock-out animals (D2R−/−) indicate that DAT and D2 proteins interact in vivo. Together, our results demonstrate that the interaction between genetic variants in DRD2 and DAT critically modulates the nonlinear relationship between dopamine and neuronal activity during memory processing.


The Journal of Neuroscience | 2009

Functional Variation of the Dopamine D2 Receptor Gene Is Associated with Emotional Control as well as Brain Activity and Connectivity during Emotion Processing in Humans

Giuseppe Blasi; Luciana Lo Bianco; Paolo Taurisano; Barbara Gelao; Raffaella Romano; Leonardo Fazio; Apostolos Papazacharias; Annabella Di Giorgio; Grazia Caforio; Antonio Rampino; Rita Masellis; Audrey C. Papp; Gianluca Ursini; Lorenzo Sinibaldi; Teresa Popolizio; Wolfgang Sadee; Alessandro Bertolino

Personality traits related to emotion processing are, at least in part, heritable and genetically determined. Dopamine D2 receptor signaling is involved in modulation of emotional behavior and activity of associated brain regions such as the amygdala and the prefrontal cortex. An intronic single nucleotide polymorphism within the D2 receptor gene (DRD2) (rs1076560, guanine > thymine or G > T) shifts splicing of the two protein isoforms (D2 short, mainly presynaptic, and D2 long) and has been associated with modulation of memory performance and brain activity. Here, our aim was to investigate the association of DRD2 rs1076560 genotype with personality traits of emotional stability and with brain physiology during processing of emotionally relevant stimuli. DRD2 genotype and Big Five Questionnaire scores were evaluated in 134 healthy subjects demonstrating that GG subjects have reduced “emotion control” compared with GT subjects. Functional magnetic resonance imaging in a sample of 24 individuals indicated greater amygdala activity during implicit processing and greater dorsolateral prefrontal cortex (DLPFC) response during explicit processing of facial emotional stimuli in GG subjects compared with GT. Other results also demonstrate an interaction between DRD2 genotype and facial emotional expression on functional connectivity of both amygdala and dorsolateral prefrontal regions with overlapping medial prefrontal areas. Moreover, rs1076560 genotype is associated with differential relationships between amygdala/DLPFC functional connectivity and emotion control scores. These results suggest that genetically determined D2 signaling may explain part of personality traits related to emotion processing and individual variability in specific brain responses to emotionally relevant inputs.


Biological Psychiatry | 2004

Functional lateralization of the sensorimotor cortex in patients with schizophrenia: effects of treatment with olanzapine.

Alessandro Bertolino; Giuseppe Blasi; Grazia Caforio; Valeria Latorre; Mariapia De Candia; Valeria Rubino; Joseph H. Callicott; Venkata S. Mattay; Antonello Bellomo; Tommaso Scarabino; Daniel R. Weinberger; Marcello Nardini

BACKGROUND Earlier cross-sectional studies with functional magnetic resonance imaging (fMRI) in treated patients with schizophrenia have reported abnormalities of cortical motor processing, including reduced lateralization of primary sensory motor cortex. The objective of the present longitudinal study was to evaluate whether such cortical abnormalities represent state or trait phenomena of the disorder. METHODS Seventeen acutely ill, previously untreated patients were studied after 4 weeks and after 8 weeks of olanzapine therapy. Seventeen matched healthy subjects served as control subjects. All subjects underwent two fMRI scans 4 weeks apart during a visually paced motor task using a simple periodic block design. Functional magnetic resonance imaging data were analyzed in Statistical Parametric Mapping (SPM99). Region of interest analyses were used to determine a laterality quotient (an index of lateralization) of motor cortical regions. RESULTS The fMRI data indicated that patients had reduced activation of the primary sensory motor cortex at 4 weeks but not at 8 weeks; however, the laterality quotient in the primary sensory motor cortex was reduced in patients at both time points. CONCLUSIONS These results suggest that some cortical abnormalities during motor processing represent state phenomena, whereas reduced functional lateralization of the primary sensory motor cortex represents an enduring trait of schizophrenia.


PLOS ONE | 2010

Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance

Alessandro Bertolino; Paolo Taurisano; Nicola M. Pisciotta; Giuseppe Blasi; Leonardo Fazio; Raffaella Romano; Barbara Gelao; Luciana Lo Bianco; Madia Lozupone; Annabella Di Giorgio; Grazia Caforio; Artor Niccoli-Asabella; Audrey C. Papp; Gianluca Ursini; Lorenzo Sinibaldi; Teresa Popolizio; Wolfgang Sadee; Giuseppe Rubini

Background Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Methods Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Results Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Conclusions Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

Collaboration


Dive into the Grazia Caforio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annabella Di Giorgio

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Teresa Popolizio

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge