Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grazia M.S. Mancini is active.

Publication


Featured researches published by Grazia M.S. Mancini.


Brain | 2010

Magnetic resonance imaging pattern recognition in hypomyelinating disorders.

Marjan E. Steenweg; Adeline Vanderver; Susan Blaser; Alberto Bizzi; Tom J. de Koning; Grazia M.S. Mancini; Wessel N. van Wieringen; Frederik Barkhof; Nicole I. Wolf; Marjo S. van der Knaap

Hypomyelination is observed in the context of a growing number of genetic disorders that share clinical characteristics. The aim of this study was to determine the possible role of magnetic resonance imaging pattern recognition in distinguishing different hypomyelinating disorders, which would facilitate the diagnostic process. Only patients with hypomyelination of known cause were included in this retrospective study. A total of 112 patients with Pelizaeus-Merzbacher disease, hypomyelination with congenital cataract, hypomyelination with hypogonadotropic hypogonadism and hypodontia, Pelizaeus-Merzbacher-like disease, infantile GM1 and GM2 gangliosidosis, Salla disease and fucosidosis were included. The brain scans were rated using a standard scoring list; the raters were blinded to the diagnoses. Grouping of the patients was based on cluster analysis. Ten clusters of patients with similar magnetic resonance imaging abnormalities were identified. The most important discriminating items were early cerebellar atrophy, homogeneity of the white matter signal on T(2)-weighted images, abnormal signal intensity of the basal ganglia, signal abnormalities in the pons and additional T(2) lesions in the deep white matter. Eight clusters each represented mainly a single disorder (i.e. Pelizaeus-Merzbacher disease, hypomyelination with congenital cataract, hypomyelination with hypogonadotropic hypogonadism and hypodontia, infantile GM1 and GM2 gangliosidosis, Pelizaeus-Merzbacher-like disease and fucosidosis); only two clusters contained multiple diseases. Pelizaeus-Merzbacher-like disease was divided between two clusters and Salla disease did not cluster at all. This study shows that it is possible to separate patients with hypomyelination disorders of known cause in clusters based on magnetic resonance imaging abnormalities alone. In most cases of Pelizaeus-Merzbacher disease, hypomyelination with congenital cataract, hypomyelination with hypogonadotropic hypogonadism and hypodontia, Pelizaeus-Merzbacher-like disease, infantile GM1 and GM2 gangliosidosis and fucosidosis, the imaging pattern gives clues for the diagnosis.


The EMBO Journal | 2015

USP18 lack in microglia causes destructive interferonopathy of the mouse brain

Tobias Goldmann; Nicolas Zeller; Jenni Raasch; Katrin Kierdorf; Kathrin Frenzel; Lars Ketscher; Anja Basters; Ori Staszewski; Stefanie M. Brendecke; Alena Spiess; Tuan Leng Tay; Clemens Kreutz; Jens Timmer; Grazia M.S. Mancini; Thomas Blank; Günter Fritz; Knut Biber; Roland Lang; Danielle Malo; Doron Merkler; Mathias Heikenwalder; Klaus-Peter Knobeloch; Marco Prinz

Microglia are tissue macrophages of the central nervous system (CNS) that control tissue homeostasis. Microglia dysregulation is thought to be causal for a group of neuropsychiatric, neurodegenerative and neuroinflammatory diseases, called “microgliopathies”. However, how the intracellular stimulation machinery in microglia is controlled is poorly understood. Here, we identified the ubiquitin‐specific protease (Usp) 18 in white matter microglia that essentially contributes to microglial quiescence. We further found that microglial Usp18 negatively regulates the activation of Stat1 and concomitant induction of interferon‐induced genes, thereby terminating IFN signaling. The Usp18‐mediated control was independent from its catalytic activity but instead required the interaction with Ifnar2. Additionally, the absence of Ifnar1 restored microglial activation, indicating a tonic IFN signal which needs to be negatively controlled by Usp18 under non‐diseased conditions. These results identify Usp18 as a critical negative regulator of microglia activation and demonstrate a protective role of Usp18 for microglia function by regulating the Ifnar pathway. The findings establish Usp18 as a new molecule preventing destructive microgliopathy.


Human Mutation | 2013

Mutation Spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and Genotype–Phenotype Correlations in Warburg Micro Syndrome and Martsolf Syndrome

Mark T. Handley; Deborah J. Morris-Rosendahl; Stephen Brown; Fiona Macdonald; Carol Hardy; Danai Bem; Sarah M. Carpanini; Guntram Borck; Loreto Martorell; Claudia Izzi; Francesca Faravelli; Patrizia Accorsi; Lorenzo Pinelli; Lina Basel-Vanagaite; Gabriela Peretz; Ghada M.H. Abdel-Salam; Maha S. Zaki; Anna Jansen; David Mowat; Ian A. Glass; Helen Stewart; Grazia M.S. Mancini; Damien Lederer; Tony Roscioli; Fabienne Giuliano; Astrid S. Plomp; Arndt Rolfs; John M. Graham; Eva Seemanova; Pilar Poo

Warburg Micro syndrome and Martsolf syndrome (MS) are heterogeneous autosomal‐recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Causative biallelic germline mutations have been identified in RAB3GAP1, RAB3GAP2, or RAB18, each of which encode proteins involved in membrane trafficking. This report provides an up to date overview of all known disease variants identified in 29 previously published families and 52 new families. One‐hundred and forty‐four Micro and nine Martsolf families were investigated, identifying mutations in RAB3GAP1 in 41% of cases, mutations in RAB3GAP2 in 7% of cases, and mutations in RAB18 in 5% of cases. These are listed in Leiden Open source Variation Databases, which was created by us for all three genes. Genotype–phenotype correlations for these genes have now established that the clinical phenotypes in Micro syndrome and MS represent a phenotypic continuum related to the nature and severity of the mutations present in the disease genes, with more deleterious mutations causing Micro syndrome and milder mutations causing MS. RAB18 has not yet been linked to the RAB3 pathways, but mutations in all three genes cause an indistinguishable phenotype, making it likely that there is some overlap. There is considerable genetic heterogeneity for these disorders and further gene identification will help delineate these pathways.


European Journal of Medical Genetics | 2012

Neurological findings in incontinentia pigmenti; a review

Marije Meuwissen; Grazia M.S. Mancini

Incontinentia Pigmenti is a rare X-linked multisystem disorder with well described and pathognomonic skin manifestations. Neurological manifestations are found in 30% of IP patients, forming one of the major causes of morbidity and mortality of the condition. In this review, clinical and brain imaging data of 45 IP patients with a neurological phenotype are reviewed. Several clinical presentations could be identified, comprising seizures, infantile encephalopathy, acute disseminated encephalomyelitis and ischemic stroke. Most neurological features presented during the neonatal period. No patients presented during adolescence or at adult age. Seizures of different type are reported in about 20% of the patients at young age and seem to correlate with the degree of cerebrovascular damage. Brain MRI findings include periventricular and subcortical white matter disease, haemorrhagic changes, corpus callosum hypoplasia, cerebral atrophy and cerebellar hypoplasia. Ocular findings comprise a range of retinal vascular changes and optic atrophy, but also developmental defects like microphthalmia and cataract. Most findings may reflect changes following brain injury. Both (ischemic) vascular and inflammatory components may play a role in the cerebral and ocular phenotype. However, a role of disturbed apoptosis during development may also be a contributing factor.


Journal of Experimental Medicine | 2016

Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome

Marije Meuwissen; Rachel Schot; Sofija Buta; Grétel Oudesluijs; Sigrid Tinschert; Scott D. Speer; Zhi Li; Leontine van Unen; Daphne Heijsman; Tobias Goldmann; Maarten H. Lequin; Johan M. Kros; Wendy Stam; Mark Hermann; Rob Willemsen; Rutger W. W. Brouwer; Wilfred van IJcken; Marta Martin-Fernandez; Irenaeus F.M. de Coo; Jeroen Dudink; Femke A.T. de Vries; Aida Bertoli Avella; Marco Prinz; Yanick J. Crow; Frans W. Verheijen; Sandra Pellegrini; Dusan Bogunovic; Grazia M.S. Mancini

Meuwissen and collaborators define a novel genetic cause of pseudo-TORCH syndrome, which resembles the sequelae of congenital infection and represents a novel type I interferonopathy.


Brain | 2017

Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

Markus Wolff; Katrine Johannesen; Ulrike B. S. Hedrich; Silvia Masnada; Guido Rubboli; Elena Gardella; Gaetan Lesca; Dorothée Ville; Mathieu Milh; Laurent Villard; Alexandra Afenjar; Sandra Chantot-Bastaraud; Cyril Mignot; Caroline Lardennois; Caroline Nava; Niklas Schwarz; Marion Gerard; Laurence Perrin; Diane Doummar; Stéphane Auvin; Maria J Miranda; Maja Hempel; Eva H. Brilstra; N.V.A.M. Knoers; Nienke E. Verbeek; Marjan van Kempen; Kees P. J. Braun; Grazia M.S. Mancini; Saskia Biskup; Konstanze Hörtnagel

Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy.


Journal of Hepatology | 2014

Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia

Mathilde Di Filippo; Philippe Moulin; Pascal Roy; Marie Elisabeth Samson-Bouma; Sophie Collardeau-Frachon; Sabrina Chebel-Dumont; N. Peretti; Jérôme Dumortier; Fabien Zoulim; Thierry Fontanges; Rossella Parini; Miriam Rigoldi; Francesca Furlan; Grazia M.S. Mancini; Dominique Bonnefont-Rousselot; Eric Bruckert; Jacques Schmitz; Jean-Yves Scoazec; Sybil Charriere; Sylvie Villar-Fimbel; Frédéric Gottrand; B. Dubern; Diane Doummar; Francesca Joly; Marie Elisabeth Liard-Meillon; A. Lachaux; Agnès Sassolas

BACKGROUND & AIMSnNon-alcoholic steatohepatitis leading to fibrosis occurs in patients with abetalipoproteinemia (ABL) and homozygous or compound heterozygous familial hypobetalipoproteinemia (Ho-FHBL). We wanted to establish if liver alterations were more frequent in one of both diseases and were influenced by comorbidities.nnnMETHODSnWe report genetic, clinical, histological and biological characteristics of new cases of ABL (n =7) and Ho-FHBL (n = 7), and compare them with all published ABL (51) and Ho-FHBL (22) probands.nnnRESULTSnABL patients, diagnosed during infancy, presented mainly with diarrhea, neurological and ophthalmological impairments and remained lean, whereas Ho-FHBL were diagnosed later, with milder symptoms often becoming overweight in adulthood. Despite subtle differences in lipid phenotype, liver steatosis was observed in both groups with a high prevalence of severe fibrosis (5/27 for Ho-FHBL vs. 4/58 for ABL (n.s.)). Serum triglycerides concentration was higher in Ho-FHBL whereas total and HDL-cholesterol were similar in both groups. In Ho-FHBL liver alterations were found to be independent from the apoB truncation size and apoB concentrations.nnnCONCLUSIONSnOur findings provide evidence for major liver abnormalities in both diseases. While ABL and Ho-FHBL patients have subtle differences in lipid phenotype, carriers of APOB mutations are more frequently obese. These results raise the question of a complex causal link between apoB metabolism and obesity. They suggest that the genetic defect in VLDL assembly is critical for the occurrence of liver steatosis leading to fibrosis and shows that obesity and insulin resistance might contribute by increasing lipogenesis.


Nature Neuroscience | 2014

Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human

Michel Kielar; Françoise Phan Dinh Tuy; Sara Bizzotto; Cécile Lebrand; Camino de Juan Romero; Karine Poirier; Renske Oegema; Grazia M.S. Mancini; Nadia Bahi-Buisson; Robert Olaso; Anne-Gaëlle Le Moing; Katia Boutourlinsky; Dominique Boucher; Wassila Carpentier; Patrick Berquin; Jean-François Deleuze; Richard Belvindrah; Víctor Borrell; Egbert Welker; Jamel Chelly; Alexandre Croquelois; Fiona Francis

Neuronal migration disorders such as lissencephaly and subcortical band heterotopia are associated with epilepsy and intellectual disability. DCX, PAFAH1B1 and TUBA1A are mutated in these disorders; however, corresponding mouse mutants do not show heterotopic neurons in the neocortex. In contrast, spontaneously arisen HeCo mice display this phenotype, and our study revealed that misplaced apical progenitors contribute to heterotopia formation. While HeCo neurons migrated at the same speed as wild type, abnormally distributed dividing progenitors were found throughout the cortical wall from embryonic day 13. We identified Eml1, encoding a microtubule-associated protein, as the gene mutated in HeCo mice. Full-length transcripts were lacking as a result of a retrotransposon insertion in an intron. Eml1 knockdown mimicked the HeCo progenitor phenotype and reexpression rescued it. We further found EML1 to be mutated in ribbon-like heterotopia in humans. Our data link abnormal spindle orientations, ectopic progenitors and severe heterotopia in mouse and human.


Clinical Genetics | 2015

Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked Kabuki syndrome (KS2)

Siddharth Banka; Damien Lederer; Valérie Benoit; E. Jenkins; E. Howard; S. Bunstone; Bronwyn Kerr; Shane McKee; I.C. Lloyd; Deborah J. Shears; Helen Stewart; Susan M. White; Ravi Savarirayan; Grazia M.S. Mancini; D. Beysen; Ronald D. Cohn; Bernard Grisart; Isabelle Maystadt; Dian Donnai

We describe seven patients with KDM6A (located on Xp11.3 and encodes UTX) mutations, a rare cause of Kabuki syndrome (KS2, MIM 300867) and report, for the first time, germ‐line missense and splice‐site mutations in the gene. We demonstrate that less than 5% cases of Kabuki syndrome are due to KDM6A mutations. Our work shows that similar to the commoner Type 1 Kabuki syndrome (KS1, MIM 147920) caused by KMT2D (previously called MLL2) mutations, KS2 patients are characterized by hypotonia and feeding difficulties during infancy and poor postnatal growth and short stature. Unlike KS1, developmental delay and learning disability are generally moderate–severe in boys but mild–moderate in girls with KS2. Some girls may have a normal developmental profile. Speech and cognition tend to be more severely affected than motor development. Increased susceptibility to infections, join laxity, heart, dental and ophthalmological anomalies are common. Hypoglycaemia is more common in KS2 than in KS1. Facial dysmorphism with KDM6A mutations is variable and diagnosis on facial gestalt alone may be difficult in some patients. Hypertrichosis, long halluces and large central incisors may be useful clues to an underlying KDM6A mutation in some patients.


Journal of Inherited Metabolic Disease | 2012

Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect

Jiddeke M. van de Kamp; Petra J. W. Pouwels; Femke K. Aarsen; Leontine W. ten Hoopen; Dirk L. Knol; Johannes B. de Klerk; Ireneus F. de Coo; Jan G. M. Huijmans; Cornelis Jakobs; Marjo S. van der Knaap; Gajja S. Salomons; Grazia M.S. Mancini

The creatine transporter (CRTR) defect is a recently discovered cause of X-linked intellectual disability for which treatment options have been explored. Creatine monotherapy has not proved effective, and the effect of treatment with L-arginine is still controversial. Nine boys between 8xa0months and 10xa0years old with molecularly confirmed CRTR defect were followed with repeated 1H-MRS and neuropsychological assessments during 4–6xa0years of combination treatment with creatine monohydrate, L-arginine, and glycine. Treatment did not lead to a significant increase in cerebral creatine content as observed with H1-MRS. After an initial improvement in locomotor and personal-social IQ subscales, no lasting clinical improvement was recorded. Additionally, we noticed an age-related decline in IQ subscales in boys affected with the CRTR defect.

Collaboration


Dive into the Grazia M.S. Mancini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Schot

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Frans W. Verheijen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Marije Meuwissen

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sakkubai Naidu

Kennedy Krieger Institute

View shared research outputs
Top Co-Authors

Avatar

William B. Dobyns

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar

D. J. J. Halley

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

I.F.M. de Coo

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

M.C.Y. de Wit

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge