Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Grazia R. Tundo is active.

Publication


Featured researches published by Grazia R. Tundo.


Molecular Aspects of Medicine | 2012

Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes

Diego Sbardella; Giovanni Francesco Fasciglione; Magda Gioia; Chiara Ciaccio; Grazia R. Tundo; Stefano Marini; Massimo Coletta

Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.


Journal of Molecular Biology | 2009

Somatostatin: A Novel Substrate and a Modulator of Insulin-Degrading Enzyme Activity

Chiara Ciaccio; Grazia R. Tundo; Giuseppe Grasso; Giuseppe Spoto; Daniela Marasco; Menotti Ruvo; Magda Gioia; Enrico Rizzarelli; Massimo Coletta

Insulin-degrading enzyme (IDE) is an interesting pharmacological target for Alzheimers disease (AD), since it hydrolyzes beta-amyloid, producing non-neurotoxic fragments. It has also been shown that the somatostatin level reduction is a pathological feature of AD and that it regulates the neprilysin activity toward beta-amyloid. In this work, we report for the first time that IDE is able to hydrolyze somatostatin [k(cat) (s(-1))=0.38 (+/-0.05); K(m) (M)=7.5 (+/-0.9) x 10(-6)] at the Phe6-Phe7 amino acid bond. On the other hand, somatostatin modulates IDE activity, enhancing the enzymatic cleavage of a novel fluorogenic beta-amyloid through a decrease of the K(m) toward this substrate, which corresponds to the 10-25 amino acid sequence of the Abeta(1-40). Circular dichroism spectroscopy and surface plasmon resonance imaging experiments show that somatostatin binding to IDE brings about a concentration-dependent structural change of the secondary and tertiary structure(s) of the enzyme, revealing two possible binding sites. The higher affinity binding site disappears upon inactivation of IDE by ethylenediaminetetraacetic acid, which chelates the catalytic Zn(2+) ion. As a whole, these features suggest that the modulatory effect is due to an allosteric mechanism: somatostatin binding to the active site of one IDE subunit (where somatostatin is cleaved) induces an enhancement of IDE proteolytic activity toward fluorogenic beta-amyloid by another subunit. Therefore, this investigation on IDE-somatostatin interaction contributes to a more exhaustive knowledge about the functional and structural aspects of IDE and its pathophysiological implications in the amyloid deposition and somatostatin homeostasis in the brain.


Journal of Biological Chemistry | 2013

Insulin-degrading enzyme (IDE): a novel heat shock-like protein.

Grazia R. Tundo; Diego Sbardella; Chiara Ciaccio; Antonio Bianculli; Augusto Orlandi; Maria Giovanna Desimio; Gaetano Arcuri; Massimiliano Coletta; Stefano Marini

Background: Insulin-degrading enzyme (IDE) is a highly conserved metallopeptidase initially described because of its ability to degrade insulin. Results: (i) IDE expression is stress-inducible; (ii) IDE concentration is up-regulated in some CNS tumors; (iii) IDE down-regulation impairs SHSY5Y cell proliferation/viability. Conclusion: IDE is a multifunctional protein. Significance: IDE is a novel HSP with important implications in cell growth regulation. Insulin-degrading enzyme (IDE) is a highly conserved zinc metallopeptidase that is ubiquitously distributed in human tissues, and particularly abundant in the brain, liver, and muscles. IDE activity has been historically associated with insulin and β-amyloid catabolism. However, over the last decade, several experimental findings have established that IDE is also involved in a wide variety of physiopathological processes, including ubiquitin clearance and Varicella Zoster Virus infection. In this study, we demonstrate that normal and malignant cells exposed to different stresses markedly up-regulate IDE in a heat shock protein (HSP)-like fashion. Additionally, we focused our attention on tumor cells and report that (i) IDE is overexpressed in vivo in tumors of the central nervous system (CNS); (ii) IDE-silencing inhibits neuroblastoma (SHSY5Y) cell proliferation and triggers cell death; (iii) IDE inhibition is accompanied by a decrease of the poly-ubiquitinated protein content and co-immunoprecipitates with proteasome and ubiquitin in SHSY5Y cells. In this work, we propose a novel role for IDE as a heat shock protein with implications in cell growth regulation and cancer progression, thus opening up an intriguing hypothesis of IDE as an anticancer target.


PLOS ONE | 2012

Somatostatin Modulates Insulin-Degrading-Enzyme Metabolism: Implications for the Regulation of Microglia Activity in AD

Grazia R. Tundo; Chiara Ciaccio; Diego Sbardella; Mariaserena Boraso; Barbara Viviani; Massimiliano Coletta; Stefano Marini

The deposition of β-amyloid (Aβ) into senile plaques and the impairment of somatostatin-mediated neurotransmission are key pathological events in the onset of Alzheimers disease (AD). Insulin-degrading-enzyme (IDE) is one of the main extracellular protease targeting Aβ, and thus it represents an interesting pharmacological target for AD therapy. We show that the active form of somatostatin-14 regulates IDE activity by affecting its expression and secretion in microglia cells. A similar effect can also be observed when adding octreotide. Following a previous observation where somatostatin directly interacts with IDE, here we demonstrate that somatostatin regulates Aβ catabolism by modulating IDE proteolytic activity in IDE gene-silencing experiments. As a whole, these data indicate the relevant role played by somatostatin and, potentially, by analogue octreotide, in preventing Aβ accumulation by partially restoring IDE activity.


Journal of Inorganic Biochemistry | 2012

Metal ions affect insulin-degrading enzyme activity

Giuseppe Grasso; Fabrizio Salomone; Grazia R. Tundo; Giuseppe Pappalardo; Chiara Ciaccio; Giuseppe Spoto; Adriana Pietropaolo; Massimo Coletta; Enrico Rizzarelli

Insulin degradation is a finely tuned process that plays a major role in controlling insulin action and most evidence supports IDE (insulin-degrading enzyme) as the primary degradative agent. However, the biomolecular mechanisms involved in the interaction between IDE and its substrates are often obscure, rendering the specific enzyme activity quite difficult to target. On the other hand, biometals, such as copper, aluminum and zinc, have an important role in pathological conditions such as Alzheimers disease or diabetes mellitus. The metabolic disorders connected with the latter lead to some metallostasis alterations in the human body and many studies point at a high level of interdependence between diabetes and several cations. We have previously reported (Grasso et al., Chem. Eur. J. 17 (2011) 2752-2762) that IDE activity toward Aβ peptides can be modulated by metal ions. Here, we have investigated the effects of different metal ions on the IDE proteolytic activity toward insulin as well as a designed peptide comprising a portion of the insulin B chain (B20-30), which has a very low affinity for metal ions. The results obtained by different experimental techniques clearly show that IDE is irreversibly inhibited by copper(I) but is still able to process its substrates when it is bound to copper(II).


PLOS ONE | 2013

Reciprocal allosteric modulation of carbon monoxide and warfarin binding to ferrous human serum heme-albumin.

Alessio Bocedi; Giampiero De Sanctis; Chiara Ciaccio; Grazia R. Tundo; Alessandra di Masi; Gabriella Fanali; Francesco P. Nicoletti; Mauro Fasano; Giulietta Smulevich; Paolo Ascenzi; Massimo Coletta

Human serum albumin (HSA), the most abundant protein in human plasma, could be considered as a prototypic monomeric allosteric protein, since the ligand-dependent conformational adaptability of HSA spreads beyond the immediate proximity of the binding site(s). As a matter of fact, HSA is a major transport protein in the bloodstream and the regulation of the functional allosteric interrelationships between the different binding sites represents a fundamental information for the knowledge of its transport function. Here, kinetics and thermodynamics of the allosteric modulation: (i) of carbon monoxide (CO) binding to ferrous human serum heme-albumin (HSA-heme-Fe(II)) by warfarin (WF), and (ii) of WF binding to HSA-heme-Fe(II) by CO are reported. All data were obtained at pH 7.0 and 25°C. Kinetics of CO and WF binding to the FA1 and FA7 sites of HSA-heme-Fe(II), respectively, follows a multi-exponential behavior (with the same relative percentage for the two ligands). This can be accounted for by the existence of multiple conformations and/or heme-protein axial coordination forms of HSA-heme-Fe(II). The HSA-heme-Fe(II) populations have been characterized by resonance Raman spectroscopy, indicating the coexistence of different species characterized by four-, five- and six-coordination of the heme-Fe atom. As a whole, these results suggest that: (i) upon CO binding a conformational change of HSA-heme-Fe(II) takes place (likely reflecting the displacement of an endogenous ligand by CO), and (ii) CO and/or WF binding brings about a ligand-dependent variation of the HSA-heme-Fe(II) population distribution of the various coordinating species. The detailed thermodynamic and kinetic analysis here reported allows a quantitative description of the mutual allosteric effect of CO and WF binding to HSA-heme-Fe(II).


Biochemical and Biophysical Research Communications | 2011

Ibuprofen and warfarin modulate allosterically ferrous human serum heme-albumin nitrosylation

Paolo Ascenzi; Yu Cao; Grazia R. Tundo; Massimo Coletta; Gabriella Fanali; Mauro Fasano

Ferrous human serum heme-albumin (HSA-heme-Fe(II)) displays globin-like properties. Here, the effect of ibuprofen and warfarin on kinetics of HSA-heme-Fe(II) nitrosylation is reported. Values of the second-order rate constant for HSA-heme-Fe(II) nitrosylation (k(on)) decrease from 6.3 × 10(6)M(-1)s(-1) in the absence of drugs, to 4.1 × 10(5)M(-1)s(-1) and 4.8 × 10(5)M(-1)s(-1), in the presence of saturating amounts of ibuprofen and warfarin, respectively, at pH 7.0 and 20.0°C. From the dependence of k(on) on the drug concentration, values of the dissociation equilibrium constant for ibuprofen and warfarin binding to HSA-heme-Fe(II) (i.e., K=3.2 × 10(-3)M and 2.6 × 10(-4)M, respectively) were determined. The observed allosteric effects could indeed reflect ibuprofen and warfarin binding to the regulatory fatty acid binding site FA2, which brings about an alteration of heme coordination, slowing down HSA-heme-Fe(II) nitrosylation. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.


PLOS ONE | 2015

Functional and Spectroscopic Characterization of Chlamydomonas reinhardtii Truncated Hemoglobins.

Chiara Ciaccio; Francisco Ocaña-Calahorro; Enrica Droghetti; Grazia R. Tundo; Emanuel Sanz-Luque; Fabio Polticelli; Paolo Visca; Giulietta Smulevich; Paolo Ascenzi; Massimo Coletta

The single-cell green alga Chlamydomonas reinhardtii harbors twelve truncated hemoglobins (Cr-TrHbs). Cr-TrHb1-1 and Cr-TrHb1-8 have been postulated to be parts of the nitrogen assimilation pathway, and of a NO-dependent signaling pathway, respectively. Here, spectroscopic and reactivity properties of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4, all belonging to clsss 1 (previously known as group N or group I), are reported. The ferric form of Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 displays a stable 6cLS heme-Fe atom, whereas the hexa-coordination of the ferrous derivative appears less strongly stabilized. Accordingly, kinetics of azide binding to ferric Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are independent of the ligand concentration. Conversely, kinetics of CO or NO2 − binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are ligand-dependent at low CO or NO2 − concentrations, tending to level off at high ligand concentrations, suggesting the presence of a rate-limiting step. In agreement with the different heme-Fe environments, the pH-dependent kinetics for CO and NO2−binding to ferrous Cr-TrHb1-1, Cr-TrHb1-2, and Cr-TrHb1-4 are characterized by different ligand-linked protonation events. This raises the question of whether the simultaneous presence in C. reinhardtii of multiple TrHb1s may be related to different regulatory roles.


PLOS ONE | 2014

Nitrosylation Mechanisms of Mycobacterium tuberculosis and Campylobacter jejuni Truncated Hemoglobins N, O, and P.

Paolo Ascenzi; Alessandra di Masi; Grazia R. Tundo; Alessandra Pesce; Paolo Visca; Massimo Coletta

Truncated hemoglobins (trHbs) are widely distributed in bacteria and plants and have been found in some unicellular eukaryotes. Phylogenetic analysis based on protein sequences shows that trHbs branch into three groups, designated N (or I), O (or II), and P (or III). Most trHbs are involved in the O2/NO chemistry and/or oxidation/reduction function, permitting the survival of the microorganism in the host. Here, a detailed comparative analysis of kinetics and/or thermodynamics of (i) ferrous Mycobacterium tubertulosis trHbs N and O (Mt-trHbN and Mt-trHbO, respectively), and Campylobacter jejuni trHb (Cj-trHbP) nitrosylation, (ii) nitrite-mediated nitrosylation of ferrous Mt-trHbN, Mt-trHbO, and Cj-trHbP, and (iii) NO-based reductive nitrosylation of ferric Mt-trHbN, Mt-trHbO, and Cj-trHbP is reported. Ferrous and ferric Mt-trHbN and Cj-trHbP display a very high reactivity towards NO; however, the conversion of nitrite to NO is facilitated primarily by ferrous Mt-trHbN. Values of kinetic and/or thermodynamic parameters reflect specific trHb structural features, such as the ligand diffusion pathways to/from the heme, the heme distal pocket structure and polarity, and the ligand stabilization mechanisms. In particular, the high reactivity of Mt-trHbN and Cj-trHbP reflects the great ligand accessibility to the heme center by two protein matrix tunnels and the E7-path, respectively, and the penta-coordination of the heme-Fe atom. In contrast, the heme-Fe atom of Mt-trHbO the ligand accessibility to the heme center of Mt-trHbO needs large conformational readjustments, thus limiting the heme-based reactivity. These results agree with different roles of Mt-trHbN, Mt-trHbO, and Cj-trHbP in vivo.


PLOS ONE | 2015

Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution

Diego Sbardella; Grazia R. Tundo; Francesca Sciandra; Manuela Bozzi; Magda Gioia; Chiara Ciaccio; Umberto Tarantino; Andrea Brancaccio; Massimo Coletta; Stefano Marini

Insulin-Degrading-Enzyme (IDE) is a Zn2+-dependent peptidase highly conserved throughout evolution and ubiquitously distributed in mammalian tissues wherein it displays a prevalent cytosolic localization. We have recently demonstrated a novel Heat Shock Protein-like behaviour of IDE and its association with the 26S proteasome. In the present study, we examine the mechanistic and molecular features of IDE-26S proteasome interaction in a cell experimental model, extending the investigation also to the effect of IDE on the enzymatic activities of the 26S proteasome. Further, kinetic investigations indicate that the 26S proteasome activity undergoes a functional modulation by IDE through an extra-catalytic mechanism. The IDE-26S proteasome interaction was analyzed during the Heat Shock Response and we report novel findings on IDE intracellular distribution that might be of critical relevance for cell metabolism.

Collaboration


Dive into the Grazia R. Tundo's collaboration.

Top Co-Authors

Avatar

Massimo Coletta

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Chiara Ciaccio

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Diego Sbardella

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magda Gioia

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge