Grazziela P. Figueredo
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grazziela P. Figueredo.
Interface Focus | 2013
Grazziela P. Figueredo; Tanvi V. Joshi; James M. Osborne; Helen M. Byrne; Markus R. Owen
Over the years, agent-based models have been developed that combine cell division and reinforced random walks of cells on a regular lattice, reaction–diffusion equations for nutrients and growth factors; and ordinary differential equations for the subcellular networks regulating the cell cycle. When linked to a vascular layer, this multiple scale model framework has been applied to tumour growth and therapy. Here, we report on the creation of an agent-based multi-scale environment amalgamating the characteristics of these models within a Virtual Physiological Human (VPH) Exemplar Project. This project enables reuse, integration, expansion and sharing of the model and relevant data. The agent-based and reaction–diffusion parts of the multi-scale model have been implemented and are available for download as part of the latest public release of Chaste (Cancer, Heart and Soft Tissue Environment; http://www.cs.ox.ac.uk/chaste/), part of the VPH Toolkit (http://toolkit.vph-noe.eu/). The environment functionalities are verified against the original models, in addition to extra validation of all aspects of the code. In this work, we present the details of the implementation of the agent-based environment, including the system description, the conceptual model, the development of the simulation model and the processes of verification and validation of the simulation results. We explore the potential use of the environment by presenting exemplar applications of the ‘what if’ scenarios that can easily be studied in the environment. These examples relate to tumour growth, cellular competition for resources and tumour responses to hypoxia (low oxygen levels). We conclude our work by summarizing the future steps for the expansion of the current system.
PLOS ONE | 2014
Grazziela P. Figueredo; Peer-Olaf Siebers; Markus R. Owen; Jenna Marie Reps; Uwe Aickelin
There is great potential to be explored regarding the use of agent-based modelling and simulation as an alternative paradigm to investigate early-stage cancer interactions with the immune system. It does not suffer from some limitations of ordinary differential equation models, such as the lack of stochasticity, representation of individual behaviours rather than aggregates and individual memory. In this paper we investigate the potential contribution of agent-based modelling and simulation when contrasted with stochastic versions of ODE models using early-stage cancer examples. We seek answers to the following questions: (1) Does this new stochastic formulation produce similar results to the agent-based version? (2) Can these methods be used interchangeably? (3) Do agent-based models outcomes reveal any benefit when compared to the Gillespie results? To answer these research questions we investigate three well-established mathematical models describing interactions between tumour cells and immune elements. These case studies were re-conceptualised under an agent-based perspective and also converted to the Gillespie algorithm formulation. Our interest in this work, therefore, is to establish a methodological discussion regarding the usability of different simulation approaches, rather than provide further biological insights into the investigated case studies. Our results show that it is possible to obtain equivalent models that implement the same mechanisms; however, the incapacity of the Gillespie algorithm to retain individual memory of past events affects the similarity of some results. Furthermore, the emergent behaviour of ABMS produces extra patters of behaviour in the system, which was not obtained by the Gillespie algorithm.
Memetic Computing | 2012
Grazziela P. Figueredo; Nelson F. F. Ebecken; Douglas Adriano Augusto; Helio J. C. Barbosa
One issue in data classification problems is to find an optimal subset of instances to train a classifier. Training sets that represent well the characteristics of each class have better chances to build a successful predictor. There are cases where data are redundant or take large amounts of computing time in the learning process. To overcome this issue, instance selection techniques have been proposed. These techniques remove examples from the data set so that classifiers are built faster and, in some cases, with better accuracy. Some of these techniques are based on nearest neighbors, ordered removal, random sampling and evolutionary methods. The weaknesses of these methods generally involve lack of accuracy, overfitting, lack of robustness when the data set size increases and high complexity. This work proposes a simple and fast immune-inspired suppressive algorithm for instance selection, called SeleSup. According to self-regulation mechanisms, those cells unable to neutralize danger tend to disappear from the organism. Therefore, by analogy, data not relevant to the learning of a classifier are eliminated from the training process. The proposed method was compared with three important instance selection algorithms on a number of data sets. The experiments showed that our mechanism substantially reduces the data set size and is accurate and robust, specially on larger data sets.
International Journal of Advanced Computer Science and Applications | 2013
Maria Luiza C. Passini; Katiusca B. Estébanez; Grazziela P. Figueredo; Nelson F. F. Ebecken
An issue in text classification problems involves the choice of good samples on which to train the classifier. Training sets that properly represent the characteristics of each class have a better chance of establishing a successful predictor. Moreover, sometimes data are redundant or take large amounts of computing time for the learning process. To overcome this issue, data selection techniques have been proposed, including instance selection. Some data mining techniques are based on nearest neighbors, ordered removals, random sampling, particle swarms or evolutionary methods. The weaknesses of these methods usually involve a lack of accuracy, lack of robustness when the amount of data increases, over?tting and a high complexity. This work proposes a new immune-inspired suppressive mechanism that involves selection. As a result, data that are not relevant for a classifier’s ?nal model are eliminated from the training process. Experiments show the e?ectiveness of this method, and the results are compared to other techniques; these results show that the proposed method has the advantage of being accurate and robust for large data sets, with less complexity in the algorithm.
Veterinary Immunology and Immunopathology | 2015
Eliane Isabelle Marti; Xiaowei Wang; N.N. Jambari; Claudio Rhyner; J. Olzhausen; J.J. Pérez-Barea; Grazziela P. Figueredo; Marcos Alcocer
Insect bite hypersensitivity (IBH) is a seasonal recurrent skin allergy of horses caused by IgE-mediated reactions to allergens present in the saliva of biting insects of the genus Culicoides, and possibly also Simulium and Stomoxys species. In this work we show that protein microarrays containing complex extracts and pure proteins, including recombinant Culicoides allergens, can be used as a powerful technique for the diagnosis of IBH. Besides the obvious advantages such as general profiling and use of few microliters of samples, this microarray technique permits automation and allows the generation of mathematical models with the calculation of individual risk profiles that can support the clinical diagnosis of allergic diseases. After selection of variables on influence on the projection (VIP), the observed values of sensitivity and specificity were 1.0 and 0.967, respectively. This confirms the highly discriminatory power of this approach for IBH and made it possible to attain a robust predictive mathematical model for this disease. It also further demonstrates the specificity of the protein array method on identifying a particular IgE-mediated disease when the sensitising allergen group is known.
BMC Bioinformatics | 2013
Grazziela P. Figueredo; Peer-Olaf Siebers; Uwe Aickelin
Many advances in research regarding immuno-interactions with cancer were developed with the help of ordinary differential equation (ODE) models. These models, however, are not effectively capable of representing problems involving individual localisation, memory and emerging properties, which are common characteristics of cells and molecules of the immune system. Agent-based modelling and simulation is an alternative paradigm to ODE models that overcomes these limitations. In this paper we investigate the potential contribution of agent-based modelling and simulation when compared to ODE modelling and simulation. We seek answers to the following questions: Is it possible to obtain an equivalent agent-based model from the ODE formulation? Do the outcomes differ? Are there any benefits of using one method compared to the other? To answer these questions, we have considered three case studies using established mathematical models of immune interactions with early-stage cancer. These case studies were re-conceptualised under an agent-based perspective and the simulation results were then compared with those from the ODE models. Our results show that it is possible to obtain equivalent agent-based models (i.e. implementing the same mechanisms); the simulation output of both types of models however might differ depending on the attributes of the system to be modelled. In some cases, additional insight from using agent-based modelling was obtained. Overall, we can confirm that agent-based modelling is a useful addition to the tool set of immunologists, as it has extra features that allow for simulations with characteristics that are closer to the biological phenomena.
PLOS ONE | 2015
Grazziela P. Figueredo; Peer-Olaf Siebers; Uwe Aickelin; Amanda Whitbrook; Jonathan M. Garibaldi
Advances in healthcare and in the quality of life significantly increase human life expectancy. With the aging of populations, new un-faced challenges are brought to science. The human body is naturally selected to be well-functioning until the age of reproduction to keep the species alive. However, as the lifespan extends, unseen problems due to the body deterioration emerge. There are several age-related diseases with no appropriate treatment; therefore, the complex aging phenomena needs further understanding. It is known that immunosenescence is highly correlated to the negative effects of aging. In this work we advocate the use of simulation as a tool to assist the understanding of immune aging phenomena. In particular, we are comparing system dynamics modelling and simulation (SDMS) and agent-based modelling and simulation (ABMS) for the case of age-related depletion of naive T cells in the organism. We address the following research questions: Which simulation approach is more suitable for this problem? Can these approaches be employed interchangeably? Is there any benefit of using one approach compared to the other? Results show that both simulation outcomes closely fit the observed data and existing mathematical model; and the likely contribution of each of the naive T cell repertoire maintenance method can therefore be estimated. The differences observed in the outcomes of both approaches are due to the probabilistic character of ABMS contrasted to SDMS. However, they do not interfere in the overall expected dynamics of the populations. In this case, therefore, they can be employed interchangeably, with SDMS being simpler to implement and taking less computational resources.
international conference on artificial immune systems | 2011
Grazziela P. Figueredo; Uwe Aickelin; Peer-Olaf Siebers
In immune system simulation there are two competing simulation approaches: System Dynamics Simulation (SDS) and Agent-Based Simulation (ABS). In the literature there is little guidance on how to choose the best approach for a specific immune problem. Our overall research aim is to develop a framework that helps researchers with this choice. In this paper we investigate if it is possible to easily convert simulation models between approaches. With no explicit guidelines available from the literature we develop and test our own set of guidelines for converting SDS models into ABS models in a non-spacial scenario. We also define guidelines to convert ABS into SDS considering a non-spatial and a spatial scenario. After running some experiments with the developed models we found that in all cases there are significant differences between the results produced by the different simulation methods.
trust security and privacy in computing and communications | 2017
Isaac Triguero; Grazziela P. Figueredo; Mohammad Mesgarpour; Jonathan M. Garibaldi; Robert John
In this work we introduce a fast big data approach for road incident hot spot identification using Apache Spark. We implement an existing immuno-inspired mechanism, namely SeleSup, as a series of MapReduce-like operations. SeleSup is composed of a number of iterations that remove data redundancies and result in the detection of areas of high likelihood of vehicles incidents. It has been successfully applied to large datasets, however, as the size of the data increases to millions of instances, its performance drops significantly. Our objective therefore is to re-conceptualise the method for big data. In this paper we present the new implementation, the challenges faced when converting the method for the Apache Spark platform as well as the outcomes obtained. For our experiments we employ a large dataset containing hundreds of thousands of Heavy Good Vehicles incidents, collected via telematics. Results show a significant improvement in performance with no detriment to the accuracy of the method.
international conference on intelligent transportation systems | 2015
Grazziela P. Figueredo; Philip R. Quinlan; Mohammad Mesgarpour; Jonathan M. Garibaldi; Robert John
We report on the details of the methodology applied to support shortlisting the nominees for the Microlise Driver of the Year awards. The aim was to recognise the United Kingdoms most talented heavy goods vehicle (HGV) drivers, with the list of top 46 drivers across 16 different companies determined through the analysis of telematics data. Initial data for the awards was gathered from over 90,000 drivers engaging with Microlises telematics solutions. The data was analysed anonymously in order to identify the best criteria to establish top performing drivers. The initial selection was made based on a minimum number of miles driven across each of the four quarters in 2014. Outlier removal and a consensus clustering framework were subsequently employed to the dataset to identify subgroups of drivers. Three categories of drivers were identified: short, medium and long distance drivers. Each qualifying professional belonging to one of the three categories was then assessed using a range of criteria compared to other drivers from the same category. To determine the final winners, questionnaires for further evidence and indicators that might contribute to a driver being named as a winner was sent down to employers and their responses were evaluated.