Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg A. Lazar is active.

Publication


Featured researches published by Greg A. Lazar.


Molecular Cancer Therapeutics | 2008

Optimization of antibody binding to FcγRIIa enhances macrophage phagocytosis of tumor cells

John Richards; Greg A. Lazar; Hsing Chen; Wei Dang; John R. Desjarlais

The contribution of Fc-mediated effector functions to the therapeutic efficacy of some monoclonal antibodies has motivated efforts to enhance interactions with Fcγ receptors (FcγR). Although an early goal has been enhanced FcγRIIIa binding and natural killer (NK) cell antibody-dependent cell-mediated cytotoxicity (ADCC), other relevant cell types such as macrophages are dependent on additional activating receptors such as FcγRIIa. Here, we describe a set of engineered Fc variants with diverse FcγR affinities, including a novel substitution G236A that provides selectively enhanced binding to FcγRIIa relative to FcγRIIb. Variants containing this substitution have up to 70-fold greater FcγRIIa affinity and 15-fold improvement in FcγRIIa/FcγRIIb ratio and mediate enhanced phagocytosis of antibody-coated target cells by macrophages. Specific double and triple combination variants with this substitution are simultaneously capable of exhibiting high NK-mediated ADCC and high macrophage phagocytosis. In addition, we have used this unique set of variants to quantitatively probe the relative contributions of individual FcγR to effector functions mediated by NK cells and macrophages. These experiments show that FcγRIIa plays the most influential role for macrophages and, surprisingly, that the inhibitory receptor FcγRIIb has little effect on effector function. The enhancements in phagocytosis described here provide the potential to improve the performance of therapeutic antibodies targeting cancers. [Mol Cancer Ther 2008;7(8):2517–27]


mAbs | 2010

Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions.

Gregory L. Moore; Hsing Chen; Greg A. Lazar

Engineering the antibody Fc region to enhance the cytotoxic activity of therapeutic antibodies is currently an active area of investigation. The contribution of complement to the mechanism of action of some antibodies that target cancers and pathogens makes a compelling case for its optimization. Here we describe the generation of a series of Fc variants with enhanced ability to recruit complement. Variants enhanced the cytotoxic potency of an anti-CD20 antibody up to 23-fold against tumor cells in CDC assays, and demonstrated a correlated increase in C1q binding affinity. Complement-enhancing substitutions combined additively, and in one case synergistically, with substitutions previously engineered for improved binding to Fc gamma receptors. The engineered combinations provided a range of effector function activities, including simultaneously enhanced CDC, ADCC, and phagocytosis. Variants were also effective at boosting the effector function of antibodies targeting the antigens CD40 and CD19, in the former case enhancing CDC over 600-fold, and in the latter case imparting complement-mediated activity onto an IgG1 antibody that was otherwise incapable of it. This work expands the toolkit of modifications for generating monoclonal antibodies with improved therapeutic potential, and enables the exploration of optimized synergy between Fc gamma receptors and complement pathways for the destruction of tumors and infectious pathogens.


Drug Discovery Today | 2003

Rational design and engineering of therapeutic proteins

Shannon Alicia Marshall; Greg A. Lazar; Arthur J. Chirino; John R. Desjarlais

An increasing number of engineered protein therapeutics are currently being developed, tested in clinical trials and marketed for use. Many of these proteins arose out of hit-and-miss efforts to discover specific mutations, fusion partners or chemical modifications that confer desired properties. Through these efforts, several useful strategies have emerged for rational optimization of therapeutic candidates. The controlled manipulation of the physical, chemical and biological properties of proteins enabled by structure-based simulation is now being used to refine established rational engineering approaches and to advance new strategies. These methods provide clear, hypothesis-driven routes to solve problems that plague many proteins and to create novel mechanisms of action. We anticipate that rational protein engineering will shape the field of protein therapeutics dramatically by improving existing products and enabling the development of novel therapeutic agents.


Molecular Immunology | 2008

Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcγRIIb with Fc-engineered antibodies

Seung Y. Chu; Igor Vostiar; Gregory L. Moore; Greg A. Lazar; Erik Pong; Patrick F. Joyce; David E. Szymkowski; John R. Desjarlais

The humoral immune response requires antigen-specific B cell activation and subsequent terminal differentiation into plasma cells. Engagement of B cell antigen receptor (BCR) on mature B cells activates an intracellular signaling cascade, including calcium mobilization, which leads to cell proliferation and differentiation. Coengagement by immune complex of BCR with the inhibitory Fc receptor FcgammaRIIb, the only IgG receptor expressed on B cells, inhibits B cell activation signals through a negative feedback loop. We now describe antibodies that mimic the inhibitory effects of immune complex by high-affinity coengagement of FcgammaRIIb and the BCR coreceptor complex on human B cells. We engineered the Fc domain of an anti-CD19 antibody to generate variants with up to approximately 430-fold greater affinity to FcgammaRIIb. Relative to native IgG1, the FcgammaRIIb binding-enhanced (IIbE) variants strongly inhibited BCR-induced calcium mobilization and viability in primary human B cells. Inhibitory effects involved phosphorylation of SH2-containing inositol polyphosphate 5-phosphatase (SHIP), which is known to be involved in FcgammaRIIb-induced negative feedback of B cell activation by immune complex. Coengagement of BCR and FcgammaRIIb by IIbE variants also overcame the anti-apoptotic effects of BCR activation. The use of a single antibody to suppress B cell functions by coengagement of BCR and FcgammaRIIb may represent a novel approach in the treatment of B cell-mediated autoimmune diseases.


Structure | 1999

Solution structure and dynamics of a designed hydrophobic core variant of ubiquitin

Eric C. Johnson; Greg A. Lazar; John R. Desjarlais; Tracy M. Handel

BACKGROUND The recent merger of computation and protein design has resulted in a burst of success in the generation of novel proteins with native-like properties. A critical component of this coupling between theory and experiment is a detailed analysis of the structures and stabilities of designed proteins to assess and improve the accuracy of design algorithms. RESULTS Here we report the solution structure of a hydrophobic core variant of ubiquitin, referred to as 1D7, which was designed with the core-repacking algorithm ROC. As a measure of conformational specificity, we also present amide exchange protection factors and backbone and sidechain dynamics. The results indicate that 1D7 is similar to wild-type (WT) ubiquitin in backbone structure and degree of conformational specificity. We also observe a good correlation between experimentally determined sidechain structures and those predicted by ROC. However, evaluation of the core sidechain conformations indicates that, in general, 1D7 has more sidechains in less statistically favorable conformations than WT. CONCLUSIONS Our results provide an explanation for the lower stability of 1D7 compared to WT, and suggest modifications to design algorithms that may improve the accuracy with which structure and stability are predicted. The results also demonstrate that core packing can affect conformational flexibility in subtle ways that are likely to be important for the design of function and protein-ligand interactions.


mAbs | 2011

A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens

Gregory L. Moore; Cristina Bautista; Erik Pong; Duc-Hanh T. Nguyen; Jonathan Jacinto; Araz Eivazi; Umesh Muchhal; Seung Y. Chu; Greg A. Lazar

Bispecific antibodies based on full-length antibody structures are more optimal than fragment-based formats because they benefit from the favorable properties of the Fc region. However, the homodimeric nature of Fc effectively imposes bivalent binding on all current full-length bispecific antibodies, an attribute that can result in nonspecific activation of cross-linked receptors. We engineered a novel bispecific format, referred to as mAb-Fv, that utilizes a heterodimeric Fc region to enable monovalent co-engagement of a second target antigen in a full-length context. mAb-Fv constructs co-targeting CD16 and CD3 were expressed and purified as heterodimeric species, bound selectively to their co-target antigens, and mediated potent cytotoxic activity by NK cells and T cells, respectively. The capacity to co-engage distinct target antigens simultaneously with different valencies is an improved feature for bispecific antibodies with promising therapeutic implications.


Journal of Biological Chemistry | 2006

Rational Design of Intercellular Adhesion Molecule-1 (ICAM-1) Variants for Antagonizing Integrin Lymphocyte Function-associated Antigen-1-dependent Adhesion

Gang Song; Greg A. Lazar; Tanja Kortemme; Motomu Shimaoka; John R. Desjarlais; David Baker; Timothy A. Springer

The interaction between integrin lymphocyte function-associated antigen-1 (LFA-1) and its ligand intercellular adhesion molecule-1 (ICAM-1) is critical in immunological and inflammatory reactions but, like other adhesive interactions, is of low affinity. Here, multiple rational design methods were used to engineer ICAM-1 mutants with enhanced affinity for LFA-1. Five amino acid substitutions 1) enhance the hydrophobicity and packing of residues surrounding Glu-34 of ICAM-1, which coordinates to a Mg2+ in the LFA-1 I domain, and 2) alter associations at the edges of the binding interface. The affinity of the most improved ICAM-1 mutant for intermediate- and high-affinity LFA-1 I domains was increased by 19-fold and 22-fold, respectively, relative to wild type. Moreover, potency was similarly enhanced for inhibition of LFA-1-dependent ligand binding and cell adhesion. Thus, rational design can be used to engineer novel adhesion molecules with high monomeric affinity; furthermore, the ICAM-1 mutant holds promise for targeting LFA-1-ICAM-1 interaction for biological studies and therapeutic purposes.


Experimental Cell Research | 2011

Modulation of antibody effector function

John R. Desjarlais; Greg A. Lazar

Several novel technologies have evolved over the last decade for the modification of antibodies to enhance their inherent effector functions. All focus on the constant Fc domain and utilize either amino acid substitutions or glycoform perturbations to modulate their interaction with Fc receptors and the effector cells that bear them. We review these technologies with an emphasis on their validation with animal models and human clinical data.


Current Opinion in Structural Biology | 2003

Designing proteins for therapeutic applications.

Greg A. Lazar; Shannon Alicia Marshall; Joseph J Plecs; Stephen L. Mayo; John R. Desjarlais

Protein design is becoming an increasingly useful tool for optimizing protein drugs and creating novel biotherapeutics. Recent progress includes the engineering of monoclonal antibodies, cytokines, enzymes and viral fusion inhibitors.


Current Opinion in Chemical Biology | 1998

Hydrophobic core packing and protein design

Greg A. Lazar; Tracy M. Handel

Over the past few years, we have witnessed exciting advances in protein design. Several groups have reported success in the design of hydrophobic cores, and the principles developed in these studies have been recently applied to the full sequence design of a small protein motif and the design of a catalytically active metal center. These successes suggest that designing large, functional proteins in computero is more feasible than ever before.

Collaboration


Dive into the Greg A. Lazar's collaboration.

Top Co-Authors

Avatar

John R. Desjarlais

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shannon Alicia Marshall

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge