Greg Bednarz
Thomas Jefferson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Greg Bednarz.
International Journal of Radiation Oncology Biology Physics | 2001
David W. Andrews; Oscar Suarez; H. Warren Goldman; M. Beverly Downes; Greg Bednarz; Benjamin W. Corn; Maria Werner-Wasik; Jeffrey G. Rosenstock; W.J. Curran
BACKGROUND Stereotactic radiosurgery (SRS) and, more recently, fractionated stereotactic radiotherapy (SRT) have been recognized as noninvasive alternatives to surgery for the treatment of acoustic schwannomas. We review our experience of acoustic tumor treatments at one institution using a gamma knife for SRS and the first commercial world installation of a dedicated linac for SRT. METHODS Patients were treated with SRS on the gamma knife or SRT on the linac from October 1994 through August 2000. Gamma knife technique involved a fixed-frame multiple shot/high conformality single treatment, whereas linac technique involved daily conventional fraction treatments involving a relocatable frame, fewer isocenters, and high conformality established by noncoplanar arc beam shaping and differential beam weighting. RESULTS Sixty-nine patients were treated on the gamma knife, and 56 patients were treated on the linac, with 1 NF-2 patient common to both units. Three patients were lost to follow-up, and in the remaining 122 patients, mean follow-up was 119 +/- 67 weeks for SRS patients and 115 +/- 96 weeks for SRT patients. Tumor control rates were high (> or =97%) for sporadic tumors in both groups but lower for NF-2 tumors in the SRT group. Cranial nerve morbidities were comparably low in both groups, with the exception of functional hearing preservation, which was 2.5-fold higher in patients who received conventional fraction SRT. CONCLUSION SRS and SRT represent comparable noninvasive treatments for acoustic schwannomas in both sporadic and NF-2 patient groups. At 1-year follow-up, a significantly higher rate of serviceable hearing preservation was achieved in SRT sporadic tumor patients and may therefore be preferable to alternatives including surgery, SRS, or possibly observation in patients with serviceable hearing.
International Journal of Radiation Oncology Biology Physics | 2010
Robert B. Den; A Doemer; Greg Kubicek; Greg Bednarz; James M. Galvin; William M. Keane; Ying Xiao; Mitchell Machtay
PURPOSE To report on a prospective clinical trial of the use of daily kilovoltage cone-beam computed tomography (CBCT) to evaluate the interfraction and residual error motion of patients undergoing intensity-modulated radiotherapy for head-and-neck cancer. METHODS AND MATERIALS Patients were treated with intensity-modulated radiotherapy with an Elekta linear accelerator using a mounted CBCT scanner. CBCT was performed before every treatment, and translational (but not rotational) corrections were performed. At least once per week, a CBCT scan was obtained after intensity-modulated radiotherapy. Variations were measured in the medial-lateral, superoinferior, and anteroposterior dimensions, as well as in the rotation around these axes. RESULTS A total of 28 consecutive patients (1,013 CBCT scans) were studied. The average interfraction shift was 1.4 +/- 1.4, 1.7 +/- 1.9, and 1.8 +/- 2.1 mm in the medial-lateral, superoinferior, and anteroposterior dimensions, respectively. The corresponding average residual error shifts were 0.7 +/- 0.8, 0.9 +/- 0.9, and 0.9 +/- 0.9 mm. These data indicate that in the absence of daily CBCT image-guided radiotherapy, a clinical target volume to planning target volume margin of 3.9, 4.1, and 4.9 mm is needed in the medial-lateral, superoinferior, and anteroposterior dimensions, respectively. With daily CBCT, corresponding margins of 1.6, 2.5, and 1.9 mm should be acceptable. Subgroup analyses showed that larynx cancers and/or intratreatment weight loss indicate a need for slightly larger clinical target volume to planning target volume margins. CONCLUSION The results of our study have shown that image-guided radiotherapy using CBCT for head-and-neck cancer is effective. These data suggest it allows a reduction in the clinical target volume to planning target volume margins by about 50%, which could facilitate future studies of dose escalation and/or improved toxicity reduction. Caution is particularly warranted for cases in which the targets are mobile (e.g., the tongue).
Physics in Medicine and Biology | 2002
Greg Bednarz; Darek Michalski; C Houser; M. Saiful Huq; Ying Xiao; P.R. Anne; James M. Galvin
Complex intensity patterns generated by traditional beamlet-based inverse treatment plans are often very difficult to deliver. In the approach presented in this work the intensity maps are controlled by pre-defining field segments to be used for dose optimization. A set of simple rules was used to define a pool of allowable delivery segments and the mixed-integer programming (MIP) method was used to optimize segment weights. The optimization problem was formulated by combining real variables describing segment weights with a set of binary variables, used to enumerate voxels in targets and critical structures. The MIP method was compared to the previously used Cimmino projection algorithm. The field segmentation approach was compared to an inverse planning system with a traditional beamlet-based beam intensity optimization. In four complex cases of oropharyngeal cancer the segmental inverse planning produced treatment plans, which competed with traditional beamlet-based IMRT plans. The mixed-integer programming provided mechanism for imposition of dose–volume constraints and allowed for identification of the optimal solution for feasible problems. Additional advantages of the segmental technique presented here are: simplified dosimetry, quality assurance and treatment delivery.
Neurosurgery | 1999
Greg Bednarz; M. Beverly Downes; Benjamin W. Corn; Walter J. Curran; H. Warren Goldman
PURPOSE This study was undertaken to determine the impact of geometric distortions on the spatial accuracy of magnetic resonance imaging (MRI)-guided stereotactic localization for gamma knife functional radiosurgery. METHOD The spatial accuracy of MRI was evaluated by comparing stereotactic coordinates of intracranial targets, external fiducials, and anatomic structures defined by computed tomographic and MRI studies of the Radionics skull phantom (Radionics, Inc., Burlington, MA), the Rando head phantom, and 11 patients who underwent gamma knife functional radiosurgery. The distortion in MRI was assessed from computed tomographic and MRI fusion studies for these patients, as well as from MRI studies acquired by swapping the direction of the magnetic field gradients for five patients who underwent gamma knife radiosurgery and three patients who underwent MRI-guided frameless surgery. A follow-up program to compare the location of the created lesion with the intended target complemented the analysis. RESULTS The average difference between computed tomographic and MRI stereotactic coordinates of external fiducials, intracranial targets, and anatomic landmarks was of the order of 1 pixel size (0.9 x 0.9 x 1 mm3) along the x, y, and z axes. The average linear scaling along these axes as determined by fusion studies was approximately 0.8% and consistent with a single pixel. The follow-up studies, available for seven patients, revealed good agreement between the location of the created lesion and the intended target. CONCLUSION The spatial accuracy of an MRI-based localization system can be comparable to computed tomography-based localization with the added benefit of MRI resolution. Both machine- and object-related MRI distortions can be reduced to an acceptable level with contemporary scanners, optimized scanning sequences, and distortion-resistant stereotactic instruments.
International Journal of Radiation Oncology Biology Physics | 2009
David W. Andrews; Maria Werner-Wasik; Robert B. Den; Sun Ha Paek; Beverly Downes-Phillips; Thomas O. Willcox; Greg Bednarz; Mitchell Maltenfort; James J. Evans; Walter J. Curran
PURPOSE To describe our initial experience of fractionated stereotactic radiotherapy dose reduction comparing two dose cohorts with examination of tumor control rates and serviceable hearing preservation rates. METHODS AND MATERIALS After institutional review board approval, we initiated a retrospective chart review to study the hearing outcomes and tumor control rates. All data were entered into a JMP, version 7.01, statistical spreadsheet for analysis. RESULTS A total of 89 patients with serviceable hearing had complete serial audiometric data available for analysis. The higher dose cohort included 43 patients treated to 50.4 Gy with a median follow-up (latest audiogram) of 53 weeks and the lower dose cohort included 46 patients treated to 46.8 Gy with a median follow-up of 65 weeks. The tumor control rate was 100% in both cohorts, and the pure tone average was significantly improved in the low-dose cohort (33 dB vs. 40 dB, p = 0.023, chi-square). When the patient data were analyzed at comparable follow-up points, the actuarial hearing preservation rate was significantly longer for the low-dose cohort than for the high-dose cohort (165 weeks vs. 79 weeks, p = .0318, log-rank). Multivariate analysis revealed the dose cohort (p = 0.0282) and pretreatment Gardner-Robertson class (p = 0.0215) to be highly significant variables affecting the hearing outcome. CONCLUSION A lower total dose at 46.8 Gy was associated with a 100% local control tumor rate and a greater hearing preservation rate. An additional dose reduction is justified to achieve the optimal dose that will yield the greatest hearing preservation rate without compromising tumor control for these patients.
Physics in Medicine and Biology | 2002
Greg Bednarz; M. Saiful Huq; U F Rosenow
This paper presents the results of measurements of output factors (OFs) for a model U Gamma Knife collimator, with special emphasis on the accurate determination of the OF for the 4 mm collimator (OF4). In the past, the OF4 was set to 0.800 relative to the 18 mm collimator. Recently, the manufacturer has recommended a new value of 0.870 for OF4. However, most centres still use the old value of the OF4. In the present study, the Gamma Knife OFs were measured using a commercially available miniature diamond detector and a miniature 0.006 cc ion chamber, which was especially designed for the task. The measured OF4 were corrected for spatial averaging effects by measuring dose profiles for the 4 mm collimator with the same detectors and deconvolving their response from the measured profiles. A Gaussian kernel was used to describe the detector response. The relative OFs measured with the diamond detector/ion chamber were 0.986/0.982, 0.953/0.935 and 0.812/0.765 for the 14,8 and 4 mm collimators, respectively, as compared with the manufacturers values of 0.984, 0.956 and 0.87. The corrected OF4 was 0.881 +/- 0.012 for the diamond detector and 0.851 +/- 0.012 for the ion chamber, supporting the manufacturers revised value for this collimator.
Journal of Neurosurgery | 2008
Josef Novotny; Jagdish P. Bhatnagar; Ajay Niranjan; Mubina Quader; M. Saiful Huq; Greg Bednarz; John C. Flickinger; Douglas Kondziolka; L. Dade Lunsford
OBJECT The recently introduced Leksell Gamma Knife (LGK) Perfexion is an entirely new system with a different beam geometry compared with the LGK 4C. The new Perfexion system has 192 cobalt-60 sources that are fixed on 8 sectors (each sector has 24 sources). Each sector can be moved independently of the others and can be set to 1 of 5 different positions: 3 positions defining collimator sizes of 4, 8, and 16 mm; an off position (sources are blocked); and a home position. The purpose of this study is to compare the dosimetric characteristics of the GK 4C and the Perfexion models. This comparison is important especially for the treatment of functional disorders when only a single shot with the 4- or 8-mm collimator is used. METHODS A 160-mm-diameter spherical polystyrene phantom was used for all measurements and calculations. The irradiation geometry consisted of the placement of a single shot at the center of this phantom. Comparisons were made among different dosimetric parameters obtained from calculations performed using Leksell GammaPlan v. 8.0 and measurements performed using film dosimetry. The dosimetric parameters investigated were dose profiles for all collimators in all 3 stereotactic planes (x, y, and z) including the full width at half maximum and the penumbra for each profile, cumulative dose-volume histograms, the volume encompassed by the 50% isodose surface, the mean doses delivered to a defined matrix volume, and relative output factors for all collimator sizes. RESULTS There was excellent agreement between the dosimetric parameters of GK 4C and Perfexion for the 4- and 8-mm collimators. CONCLUSIONS The results of this study suggest that consistent treatments of functional disorders will be delivered using either GK 4C or Perfexion.
Physics in Medicine and Biology | 2004
Greg Bednarz; Darek Michalski; P.R. Anne; Richard K. Valicenti
The results of optimization of inverse treatment plans depend on a choice of the objective function. Even when the optimal solution for a given cost function can be obtained, a better solution may exist for a given clinical scenario and it could be obtained with a revised objective function. In the approach presented in this work mixed integer programming was used to introduce a new volume-based objective function, which allowed for minimization of the number of under- or overdosed voxels in selected structures. By selecting and prioritizing components of this function the user could drive the computations towards the desired solution. This optimization approach was tested using cases of patients treated for prostate and oropharyngeal cancer. Initial solutions were obtained based on minimization/maximization of the dose to critical structures and targets. Subsequently, the volume-based objective functions were used to locate solutions, which satisfied better clinical objectives particular to each of the cases. For prostate cases, these additional solutions offered further improvements in sparing of the rectum or the bladder. For oropharyngeal cases, families of solutions were obtained satisfying an intensity modulated radiation therapy protocol for this disease site, while offering significant improvement in the sparing of selected critical structures, e.g., parotid glands. An additional advantage of the present approach was in providing a convenient mechanism to test the feasibility of the dose-volume histogram constraints.
Journal of Applied Clinical Medical Physics | 2017
Chenyu Yan; Anthony G Combine; Greg Bednarz; R Lalonde; Bin Hu; Kathy Dickens; Raymond Wynn; Daniel C. Pavord; M. Saiful Huq
Abstract Purpose The main aim of this study is to validate the Acuros XB dose calculation algorithm for a Varian Clinac iX linac in our clinics, and subsequently compare it with the wildely used AAA algorithm. Methods and materials The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were validated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Central axis and off‐axis points with different depths were chosen for the comparison. In addition, the accuracy of Acuros was evaluated for wedge fields with wedge angles from 15 to 60°. Similarly, variable field sizes for an inhomogeneous phantom were chosen to validate the Acuros algorithm. In addition, doses calculated by Acuros and AAA at the center of lung equivalent tissue from three different VMAT plans were compared to the ion chamber measured doses in QUASAR phantom, and the calculated dose distributions by the two algorithms and their differences on patients were compared. Computation time on VMAT plans was also evaluated for Acuros and AAA. Differences between dose‐to‐water (calculated by AAA and Acuros XB) and dose‐to‐medium (calculated by Acuros XB) on patient plans were compared and evaluated. Results For open 6 MV photon beams on the homogeneous water phantom, both Acuros XB and AAA calculations were within 1% of measurements. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. Testing on the inhomogeneous phantom demonstrated that AAA overestimated doses by up to 8.96% at a point close to lung/solid water interface, while Acuros XB reduced that to 1.64%. The test on QUASAR phantom showed that Acuros achieved better agreement in lung equivalent tissue while AAA underestimated dose for all VMAT plans by up to 2.7%. Acuros XB computation time was about three times faster than AAA for VMAT plans, and computation time for other plans will be discussed at the end. Maximum difference between dose calculated by AAA and dose‐to‐medium by Acuros XB (Acuros_Dm,m) was 4.3% on patient plans at the isocenter, and maximum difference between D100 calculated by AAA and by Acuros_Dm,m was 11.3%. When calculating the maximum dose to spinal cord on patient plans, differences between dose calculated by AAA and Acuros_Dm,m were more than 3%. Conclusion Compared with AAA, Acuros XB improves accuracy in the presence of inhomogeneity, and also significantly reduces computation time for VMAT plans. Dose differences between AAA and Acuros_Dw,m were generally less than the dose differences between AAA and Acuros_Dm,m. Clinical practitioners should consider making Acuros XB available in clinics, however, further investigation and clarification is needed about which dose reporting mode (dose‐to‐water or dose‐to‐medium) should be used in clinics.
Archive | 2008
Branislav Jeremic; Maria Werner-Wasik; Salvador Villà; Frank Paulsen; Greg Bednarz; Markus Buchgeister; Dolors Linero
SFRT is an interesting treatment approach of patients with pONSM which combines advantages of stereotaxy and fractionation. Several institutions used SFRT in patients with progressive visual loss to achieve impressive improvements in both visual fields and visual acuity using relatively modest doses of irradiation (mostly 45–54 Gy, using 1.8- to 2.0-Gy daily fractionation). Excellent visual outcome was almost always accompanied by low toxicity and low tumour reduction on follow-up imaging. Owing to these results, SFRT can be suggested as the new standard treatment approach in patients with pONSM and progressive visual loss.