Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg I. Elmer is active.

Publication


Featured researches published by Greg I. Elmer.


Nature | 2016

NMDAR inhibition-independent antidepressant actions of ketamine metabolites

Panos Zanos; Ruin Moaddel; Patrick J. Morris; Polymnia Georgiou; Jonathan Fischell; Greg I. Elmer; Manickavasagom Alkondon; Peixiong Yuan; Heather J. Pribut; Nagendra S. Singh; Katina S. S. Dossou; Yuhong Fang; Xi-Ping Huang; Cheryl L. Mayo; Irving W. Wainer; Edson X. Albuquerque; Scott M. Thompson; Craig J. Thomas; Carlos A. Zarate; Todd D. Gould

Major depressive disorder affects around 16 per cent of the world population at some point in their lives. Despite the availability of numerous monoaminergic-based antidepressants, most patients require several weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive, glutamatergic NMDAR (N-methyl-d-aspartate receptor) antagonist (R,S)-ketamine exerts rapid and sustained antidepressant effects after a single dose in patients with depression, but its use is associated with undesirable side effects. Here we show that the metabolism of (R,S)-ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant-related actions in mice. These antidepressant actions are independent of NMDAR inhibition but involve early and sustained activation of AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors). We also establish that (2R,6R)-HNK lacks ketamine-related side effects. Our data implicate a novel mechanism underlying the antidepressant properties of (R,S)-ketamine and have relevance for the development of next-generation, rapid-acting antidepressants.


Neuropsychopharmacology | 2010

Reduction of Endogenous Kynurenic Acid Formation Enhances Extracellular Glutamate, Hippocampal Plasticity, and Cognitive Behavior

Michelle C Potter; Greg I. Elmer; Richard Bergeron; Edson X. Albuquerque; Paolo Guidetti; Hui-Qiu Wu; Robert Schwarcz

At endogenous brain concentrations, the astrocyte-derived metabolite kynurenic acid (KYNA) antagonizes the α7 nicotinic acetylcholine receptor and, possibly, the glycine co-agonist site of the NMDA receptor. The functions of these two receptors, which are intimately involved in synaptic plasticity and cognitive processes, may, therefore, be enhanced by reductions in brain KYNA levels. This concept was tested in mice with a targeted deletion of kynurenine aminotransferase II (KAT II), a major biosynthetic enzyme of brain KYNA. At 21 days of age, KAT II knock-out mice had reduced hippocampal KYNA levels (−71%) and showed significantly increased performance in three cognitive paradigms that rely in part on the integrity of hippocampal function, namely object exploration and recognition, passive avoidance, and spatial discrimination. Moreover, compared with wild-type controls, hippocampal slices from KAT II-deficient mice showed a significant increase in the amplitude of long-term potentiation in vitro. These functional changes were accompanied by reduced extracellular KYNA (−66%) and increased extracellular glutamate (+51%) concentrations, measured by hippocampal microdialysis in vivo. Taken together, a picture emerges in which a reduction in the astrocytic formation of KYNA increases glutamatergic tone in the hippocampus and enhances cognitive abilities and synaptic plasticity. Our studies raise the prospect that interventions aimed specifically at reducing KYNA formation in the brain may constitute a promising molecular strategy for cognitive improvement in health and disease.


Neuropsychopharmacology | 2001

μ Opiate Receptor Gene Dose Effects on Different Morphine Actions: Evidence for Differential in vivo μ Receptor Reserve

Ichiro Sora; Greg I. Elmer; Masahiko Funada; Jeanne O. Pieper; Xiao-Fei Li; F. Scott Hall; George R. Uhl

Homozygous transgenic knockout mice without μ-opioid receptors lack morphine-induced antinociception, locomotion, tolerance, physical dependence, and reward. μ receptors thus appear to play central roles in these morphine actions. Different levels of μ receptor expression are found in different humans and in different animal strains. In vitro studies indicate that some morphine responses persist after inactivation of as many as 90% of the initial μ receptor complement, while others are attenuated after inactivating many fewer receptors. Varying levels of μ receptor reserve could thus exist in different μ-expressing neuronal populations in vivo. Heterozygous μ receptor knockout mice express half of wild-type μ receptor levels. Tests of morphine actions in these mice reveal evidence for differing μ receptor reserves in brain circuits that mediate distinct opiate effects. Heterozygotes display attenuated locomotion, reduced morphine self-administration, intact tolerance, rightward shifts in morphine lethality dose/effect relationships, and variable effects on place preference compared to wild-type mice. They demonstrate full physical dependence, as measured by naloxone-precipitated abstinence following five days of morphine administration. Neuroadaptive changes in sites other than μ receptors could be involved in some of these results. Nevertheless, these data document substantial influences that individual differences in levels of μ receptor expression could exert on distinct opiate drug effects. They support the idea that functional μ receptor reserve differs among the diverse neuronal populations that mediate distinct properties of opiate drugs.


Behavioural Brain Research | 2001

Rats and mice share common ethologically relevant parameters of exploratory behavior.

Dan Drai; Neri Kafkafi; Yoav Benjamini; Greg I. Elmer; Ilan Golani

Detailed studies of rat exploratory behavior reveal that it consists of typical behavior patterns having a distinct structure. Recently we have developed interactive software that uses as input the automatically digitized time-series of the animals location for the visualization, analysis, capturing and quantification of these patterns. We use this software here for the study of BALB/cJtau mouse behavior. The results suggest that a considerable number of rat patterns are also present in the mouse. These ethologically-relevant patterns have a significant potential as a phenotyping tool.


Neuropsychopharmacology | 2011

Fluctuations in Endogenous Kynurenic Acid Control Hippocampal Glutamate and Memory

Ana Pocivavsek; Hui-Qiu Wu; Michelle C Potter; Greg I. Elmer; Roberto Pellicciari; Robert Schwarcz

Kynurenic acid (KYNA), an astrocyte-derived metabolite, antagonizes the α7 nicotinic acetylcholine receptor (α7nAChR) and, possibly, the glycine co-agonist site of the NMDA receptor at endogenous brain concentrations. As both receptors are involved in cognitive processes, KYNA elevations may aggravate, whereas reductions may improve, cognitive functions. We tested this hypothesis in rats by examining the effects of acute up- or downregulation of endogenous KYNA on extracellular glutamate in the hippocampus and on performance in the Morris water maze (MWM). Applied directly by reverse dialysis, KYNA (30–300 nM) reduced, whereas the specific kynurenine aminotransferase-II inhibitor (S)-4-(ethylsulfonyl)benzoylalanine (ESBA; 0.3–3 mM) raised, extracellular glutamate levels in the hippocampus. Co-application of KYNA (100 nM) with ESBA (1 mM) prevented the ESBA-induced glutamate increase. Comparable effects on hippocampal glutamate levels were seen after intra-cerebroventricular (i.c.v.) application of the KYNA precursor kynurenine (1 mM, 10 μl) or ESBA (10 mM, 10 μl), respectively. In separate animals, i.c.v. treatment with kynurenine impaired, whereas i.c.v. ESBA improved, performance in the MWM. I.c.v. co-application of KYNA (10 μM) eliminated the pro-cognitive effects of ESBA. Collectively, these studies show that KYNA serves as an endogenous modulator of extracellular glutamate in the hippocampus and regulates hippocampus-related cognitive function. Our results suggest that pharmacological interventions leading to acute reductions in hippocampal KYNA constitute an effective strategy for cognitive improvement. This approach might be especially useful in the treatment of cognitive deficits in neurological and psychiatric diseases that are associated with increased brain KYNA levels.


European Journal of Neuroscience | 2012

Pre‐ and postnatal exposure to kynurenine causes cognitive deficits in adulthood

Ana Pocivavsek; Hui-Qiu Wu; Greg I. Elmer; John P. Bruno; Robert Schwarcz

Levels of kynurenic acid (KYNA), an endogenous product of tryptophan degradation, are elevated in the brain and cerebrospinal fluid of individuals with schizophrenia (SZ). This increase has been implicated in the cognitive dysfunctions seen in the disease, as KYNA is an antagonist of the α7 nicotinic acetylcholine receptor and the N‐methyl‐d‐aspartate receptor, both of which are critically involved in cognitive processes and in a defining neurodevelopmental period in the pathophysiology of SZ. We tested the hypothesis that early developmental increases in brain KYNA synthesis might cause biochemical and functional impairments in adulthood. To this end, we stimulated KYNA formation by adding the KYNA precursor kynurenine (100 mg/day) to the chow fed to rat dams from gestational day 15 to postnatal day 21 (PD 21). This treatment raised brain KYNA levels in the offspring by 341% on PD 2 and 210% on PD 21. Rats were then fed normal chow until adulthood (PD 56–80). In the adult animals, basal levels of extracellular KYNA, measured in the hippocampus by in vivo microdialysis, were elevated (+12%), whereas extracellular glutamate levels were significantly reduced (−13%). In separate adult animals, early kynurenine treatment was shown to impair performance in two behavioral tasks linked to hippocampal function, the passive avoidance test and the Morris water maze test. Collectively, these studies introduce a novel, naturalistic rat model of SZ, and also suggest that increases in brain KYNA during a vulnerable period in brain development may play a significant role in the pathophysiology of the disease.


The Journal of Neuroscience | 2006

Combined application of behavior genetics and microarray analysis to identify regional expression themes and gene-behavior associations.

Noah E. Letwin; Neri Kafkafi; Yoav Benjamini; Cheryl L. Mayo; Bryan Frank; Troung Luu; Norman H. Lee; Greg I. Elmer

In this report we link candidate genes to complex behavioral phenotypes by using a behavior genetics approach. Gene expression signatures were generated for the prefrontal cortex, ventral striatum, temporal lobe, periaqueductal gray, and cerebellum in eight inbred strains from priority group A of the Mouse Phenome Project. Bioinformatic analysis of regionally enriched genes that were conserved across all strains revealed both functional and structural specialization of particular brain regions. For example, genes encoding proteins with demonstrated anti-apoptotic function were over-represented in the cerebellum, whereas genes coding for proteins associated with learning and memory were enriched in the ventral striatum, as defined by the Expression Analysis Systematic Explorer (EASE) application. Association of regional gene expression with behavioral phenotypes was exploited to identify candidate behavioral genes. Phenotypes that were investigated included anxiety, drug-naive and ethanol-induced distance traveled across a grid floor, and seizure susceptibility. Several genes within the glutamatergic signaling pathway (i.e., NMDA/glutamate receptor subunit 2C, calmodulin, solute carrier family 1 member 2, and glutamine synthetase) were identified in a phenotype-dependent and region-specific manner. In addition to supporting evidence in the literature, many of the genes that were identified could be mapped in silico to surrogate behavior-related quantitative trait loci. The approaches and data set described herein serve as a valuable resource to investigate the genetic underpinning of complex behaviors.


Journal of Neurotrauma | 2010

Hyperoxic Reperfusion after Global Cerebral Ischemia Promotes Inflammation and Long-Term Hippocampal Neuronal Death

Julie L. Hazelton; Irina S. Balan; Greg I. Elmer; Robert E. Rosenthal; Gary S. Krause; Thomas H. Sanderson; Gary Fiskum

In this study we tested the hypothesis that long-term neuropathological outcome is worsened by hyperoxic compared to normoxic reperfusion in a rat global cerebral ischemia model. Adult male rats were anesthetized and subjected to bilateral carotid arterial occlusion plus bleeding hypotension for 10 min. The rats were randomized to one of four protocols: ischemia/normoxia (21% oxygen for 1 h), ischemia/hyperoxia (100% oxygen for 1 h), sham/normoxia, and sham/hyperoxia. Hippocampal CA1 neuronal survival and activation of microglia and astrocytes were measured in the hippocampi of the animals at 7 and 30 days post-ischemia. Morris water maze testing of memory was performed on days 23-30. Compared to normoxic reperfusion, hyperoxic ventilation resulted in a significant decrease in normal-appearing neurons at 7 and 30 days, and increased activation of microglia and astrocytes at 7, but not at 30, days of reperfusion. Behavioral deficits were also observed following hyperoxic, but not normoxic, reperfusion. We conclude that early post-ischemic hyperoxic reperfusion is followed by greater hippocampal neuronal death and cellular inflammatory reactions compared to normoxic reperfusion. The results of these long-term outcome studies, taken together with previously published results from short-term experiments performed with large animals, support the hypothesis that neurological outcome can be improved by avoiding hyperoxic resuscitation after global cerebral ischemia such as that which accompanies cardiac arrest.


Pharmacology, Biochemistry and Behavior | 2010

Disruption of conditioned reward association by typical and atypical antipsychotics

C.L. Danna; Greg I. Elmer

Antipsychotic drugs are broadly classified into typical and atypical compounds; they vary in their pharmacological profile however a common component is their antagonist effects at the D2 dopamine receptors (DRD2). Unfortunately, diminished DRD2 activation is generally thought to be associated with the severity of neuroleptic-induced anhedonia. The purpose of this study was to determine the effect of the atypical antipsychotic olanzapine and typical antipsychotic haloperidol in a paradigm that reflects the learned transfer of incentive motivational properties to previously neutral stimuli, namely autoshaping. In order to provide a dosing comparison to a therapeutically relevant endpoint, both drugs were tested against amphetamine-induced disruption of prepulse inhibition as well. In the autoshaping task, rats were exposed to repeated pairings of stimuli that were differentially predictive of reward delivery. Conditioned approach to the reward-predictive cue (sign-tracking) and to the reward (goal-tracking) increased during repeated pairings in the vehicle treated rats. Haloperidol and olanzapine completely abolished this behavior at relatively low doses (100microg/kg). This same dose was the threshold dose for each drug to antagonize the sensorimotor gating deficits produced by amphetamine. At lower doses (3-30microg/kg) both drugs produced a dose-dependent decrease in conditioned approach to the reward-predictive cue. There was no difference between drugs at this dose range which indicates that olanzapine disrupts autoshaping at a significantly lower proposed DRD2 receptor occupancy. Interestingly, neither drug disrupted conditioned approach to the reward at the same dose range that disrupted conditioned approach to the reward-predictive cue. Thus, haloperidol and olanzapine, at doses well below what is considered therapeutically relevant, disrupts the attribution of incentive motivational value to previously neutral cues. Drug effects on this dimension of reward processing are an important consideration in the development of future pharmacological treatments for schizophrenia.


Psychopharmacology | 2010

Qualitative differences between C57BL/6J and DBA/2J mice in morphine potentiation of brain stimulation reward and intravenous self-administration

Greg I. Elmer; Jeanne O. Pieper; Lindsey R Hamilton; Roy A. Wise

RationaleThe C57BL/6J (C57) and DBA/2J (DBA) mice are the most common genotypes used to identify chromosomal regions and neurochemical mechanisms of interest in opioid addiction. Unfortunately, outside of the oral two-bottle choice procedure, limited and sometimes controversial evidence is available for determining their relative sensitivity to the rewarding effects of morphine.ObjectivesThe purpose of this study was to utilize classically accepted models of drug abuse liability to determine relative susceptibility to the rewarding effects of morphine.MethodsThe ability of morphine or amphetamine to potentiate lateral hypothalamic brain stimulation and intravenous morphine self-administration (across three doses in a fixed ratio schedule and at the highest dose in progressive ratio schedules) was investigated in both genotypes.ResultsIn both measures, C57 and DBA mice differed dramatically in their response to morphine. Morphine potentiated rewarding stimulation in the C57 mice but antagonized it in the DBA mice. Consistent with these findings, intravenous morphine did not serve as a positive reinforcer in DBA mice under conditions that were effective in the C57 mice using a fixed ratio schedule and failed to sustain levels of responding sufficient to maintain a constant rate of drug intake under a progressive ratio schedule. In contrast, amphetamine potentiated the rewarding effects of brain stimulation similarly in the two genotypes.ConclusionsThese findings provide strong evidence that morphine is rewarding in the C57 genotype and not in the DBA genotype. Understanding their relative susceptibility is important given the prominence of these genotypes in candidate gene identification and gene mapping.

Collaboration


Dive into the Greg I. Elmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norman H. Lee

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy A. Wise

National Institute on Drug Abuse

View shared research outputs
Researchain Logo
Decentralizing Knowledge