Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norman H. Lee is active.

Publication


Featured researches published by Norman H. Lee.


Nature | 1997

The complete genome sequence of the gastric pathogen Helicobacter pylori

Jean-F. Tomb; Owen White; Anthony R. Kerlavage; Rebecca A. Clayton; Granger Sutton; Robert D. Fleischmann; Karen A. Ketchum; Hans-Peter Klenk; Steven R. Gill; Brian A. Dougherty; Karen E. Nelson; John Quackenbush; Lixin Zhou; Ewen F. Kirkness; Scott N. Peterson; Brendan J. Loftus; Delwood Richardson; Robert J. Dodson; Hanif G. Khalak; Anna Glodek; Keith McKenney; Lisa M. Fitzegerald; Norman H. Lee; Mark D. Adams; Erin Hickey; Douglas E. Berg; Jeanine D. Gocayne; Teresa Utterback; Jeremy Peterson; Jenny M. Kelley

Helicobacter pylori, strain 26695, has a circular genome of 1,667,867 base pairs and 1,590 predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified, underscoring the potential complexity of host–pathogen interaction. Based on the large number of sequence-related genes encoding outer membrane proteins and the presence of homopolymeric tracts and dinucleotide repeats in coding sequences, H. pylori, like several other mucosal pathogens, probably uses recombination and slipped-strand mispairing within repeats as mechanisms for antigenic variation and adaptive evolution. Consistent with its restricted niche, H. pylori has a few regulatory networks, and a limited metabolic repertoire and biosynthetic capacity. Its survival in acid conditions depends, in part, on its ability to establish a positive inside-membrane potential in low pH.


Nature | 1997

The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus.

Hans-Peter Klenk; Rebecca A. Clayton; Jean-Francois Tomb; Owen White; Karen E. Nelson; Karen A. Ketchum; Robert J. Dodson; Michelle L. Gwinn; Erin Hickey; Jeremy Peterson; Delwood Richardson; Anthony R. Kerlavage; David E. Graham; Nikos Kyrpides; Robert D. Fleischmann; John Quackenbush; Norman H. Lee; Granger Sutton; Steven R. Gill; Ewen F. Kirkness; Brian A. Dougherty; Keith McKenney; Mark D. Adams; Brendan J. Loftus; Scott N. Peterson; Claudia I. Reich; Leslie K. McNeil; Jonathan H. Badger; Anna Glodek; Lixin Zhou

Archaeoglobus fulgidus is the first sulphur-metabolizing organism to have its genome sequence determined. Its genome of 2,178,400 base pairs contains 2,436 open reading frames (ORFs). The information processing systems and the biosynthetic pathways for essential components (nucleotides, amino acids and cofactors) have extensive correlation with their counterparts in the archaeon Methanococcus jannaschii . The genomes of these two Archaea indicate dramatic differences in the way these organisms sense their environment, perform regulatory and transport functions, and gain energy. In contrast to M. jannaschii , A. fulgidus has fewer restriction–modification systems, and none of its genes appears to contain inteins. A quarter (651 ORFs) of the A. fulgidus genome encodes functionally uncharacterized yet conserved proteins, two-thirds of which are shared with M. jannaschii (428 ORFs). Another quarter of the genome encodes new proteins indicating substantial archaeal gene diversity.


Science | 2007

Genome sequence of Aedes aegypti, a major arbovirus vector

Vishvanath Nene; Jennifer R. Wortman; Daniel John Lawson; Brian J. Haas; Chinnappa D. Kodira; Zhijian Jake Tu; Brendan J. Loftus; Zhiyong Xi; Karyn Megy; Manfred Grabherr; Quinghu Ren; Evgeny M. Zdobnov; Neil F. Lobo; Kathryn S. Campbell; Susan E. Brown; Maria F. Bonaldo; Jingsong Zhu; Steven P. Sinkins; David G. Hogenkamp; Paolo Amedeo; Peter Arensburger; Peter W. Atkinson; Shelby Bidwell; Jim Biedler; Ewan Birney; Robert V. Bruggner; Javier Costas; Monique R. Coy; Jonathan Crabtree; Matt Crawford

We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ∼1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ∼4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of ∼2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.


Nature | 2001

Functional annotation of a full-length mouse cDNA collection

Jun Kawai; Akira Shinagawa; Kazuhiro Shibata; Masataka Yoshino; Masayoshi Itoh; Yoshiyuki Ishii; Takahiro Arakawa; Ayako Hara; Yoshifumi Fukunishi; Hideaki Konno; Jun Adachi; Shiro Fukuda; Katsunori Aizawa; Masaki Izawa; Kenichiro Nishi; Hidenori Kiyosawa; Shinji Kondo; Itaru Yamanaka; Tsuyoshi Saito; Yasushi Okazaki; Takashi Gojobori; Hidemasa Bono; Takeya Kasukawa; R. Saito; Koji Kadota; Hideo Matsuda; Michael Ashburner; Serge Batalov; Tom L. Casavant; W. Fleischmann

The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.The RIKEN Mouse Gene Encyclopaedia Project, a systematic approach to determining the full coding potential of the mouse genome, involves collection and sequencing of full-length complementary DNAs and physical mapping of the corresponding genes to the mouse genome. We organized an international functional annotation meeting (FANTOM) to annotate the first 21,076 cDNAs to be analysed in this project. Here we describe the first RIKEN clone collection, which is one of the largest described for any organism. Analysis of these cDNAs extends known gene families and identifies new ones.


Science | 2010

Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics.

Peter Arensburger; Karine Megy; Robert M. Waterhouse; Jenica Abrudan; Paolo Amedeo; Beatriz García Antelo; Lyric C. Bartholomay; Shelby Bidwell; Elisabet Caler; Francisco Camara; Corey L. Campbell; Kathryn S. Campbell; Claudio Casola; Marta T. Castro; Ishwar Chandramouliswaran; Sinéad B. Chapman; Scott Christley; Javier Costas; Eric Eisenstadt; Cédric Feschotte; Claire M. Fraser-Liggett; Roderic Guigó; Brian J. Haas; Martin Hammond; Bill S. Hansson; Janet Hemingway; Sharon R. Hill; Clint Howarth; Rickard Ignell; Ryan C. Kennedy

Closing the Vector Circle The genome sequence of Culex quinquefasciatus offers a representative of the third major genus of mosquito disease vectors for comparative analysis. In a major international effort, Arensburger et al. (p. 86) uncovered divergences in the C. quinquefasciatus genome compared with the representatives of the other two genera Aedes aegypti and Anopheles gambiae. The main difference noted is the expansion of numbers of genes, particularly for immunity, oxidoreductive functions, and digestive enzymes, which may reflect specific aspects of the Culex life cycle. Bartholomay et al. (p. 88) explored infection-response genes in Culex in more depth and uncovered 500 immune response-related genes, similar to the numbers seen in Aedes, but fewer than seen in Anopheles or the fruit fly Drosophila melanogaster. The higher numbers of genes were attributed partly to expansions in those encoding serpins, C-type lectins, and fibrinogen-related proteins, consistent with greater immune surveillance and associated signaling needed to monitor the dangers of breeding in polluted, urbanized environments. Transcriptome analysis confirmed that inoculation with unfamiliar bacteria prompted strong immune responses in Culex. The worm and virus pathogens that the mosquitoes transmit naturally provoked little immune activation, however, suggesting that tolerance has evolved to any damage caused by replication of the pathogens in the insects. The genome of a third mosquito species reveals distinctions related to vector capacities and habitat preferences. Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.


Critical Care Medicine | 1993

Impaired β-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock : association with myocardial hyporesponsiveness to catecholamines

Henry Silverman; Ruben Penaranda; Jonathan B. Orens; Norman H. Lee

ObjectivesTo determine whether myocardial hyporesponsiveness to administered catecholamines occurs in human sepsis and whether this phenomenon is associated with impaired β-adrenergic receptor stimulation of cyclic adenosine monophosphate. DesignProspective study. SettingMedical ICU in a university hospital. PatientsNormal human volunteers (n = 7), critically ill patients who were not septic (n = 9), septic patients not in shock (n = 16), and septic patients in shock (n = 17). Measurements and Main ResultsPulmonary artery catheter-derived hemodynamic data were obtained in patients with sepsis and septic shock. Isoproterenol and sodium fluoride-stimulated cyclic adenosine monophosphate accumulations were measured in circulating lymphocytes. The hemodynamic response to sequential infusions of dobutamine, 5 and 10 μg/ kg/min, was obtained in septic and septic shock patients. Baseline hemodynamic values for mean arterial pressure, cardiac index, left ventricular stroke work index, and oxygen delivery index at approximately 2 days after the onset of sepsis were significantly lower in septic shock patients compared with septic (nonshock) patients (p < .01, p < .05, p < .001, p < .01, respectively). Isoproterenol-and sodium fluoride-stimulated cyclic adenosine monophosphate accumulations were significantly reduced in septic shock patients compared with those accumulations observed in septic patients (p < .01 and p < .001, respectively). The heart rate response to 10 μg/ kg/min of dobutamine was significantly (p < .01) lower in septic shock patients compared with septic patients. ConclusionsIn patients with septic shock, impaired β-adrenergic receptor stimulation of cyclic adenosine monophosphate is associated with myocardial hyporesponsiveness to catecholamines, suggesting that β-adrenergic receptor dysfunction may contribute to the reduced myocardial performance observed in this shock state. (Crit Care Med 1993; 21:31–39)


BMC Genomics | 2006

Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes

Valerie W. Hu; Bryan Frank; Shannon Heine; Norman H. Lee; John Quackenbush

BackgroundThe autism spectrum encompasses a set of complex multigenic developmental disorders that severely impact the development of language, non-verbal communication, and social skills, and are associated with odd, stereotyped, repetitive behavior and restricted interests. To date, diagnosis of these neurologically based disorders relies predominantly upon behavioral observations often prompted by delayed speech or aberrant behavior, and there are no known genes that can serve as definitive biomarkers for the disorders.ResultsHere we demonstrate, for the first time, that lymphoblastoid cell lines from monozygotic twins discordant with respect to severity of autism and/or language impairment exhibit differential gene expression patterns on DNA microarrays. Furthermore, we show that genes important to the development, structure, and/or function of the nervous system are among the most differentially expressed genes, and that many of these genes map closely in silico to chromosomal regions containing previously reported autism candidate genes or quantitative trait loci.ConclusionOur results provide evidence that novel candidate genes for autism may be differentially expressed in lymphoid cell lines from individuals with autism spectrum disorders. This finding further suggests the possibility of developing a molecular screen for autism based on expressed biomarkers in peripheral blood lymphocytes, an easily accessible tissue. In addition, gene networks are identified that may play a role in the pathophysiology of autism.


Clinical Cancer Research | 2008

Proteomic Analysis of Laser-Captured Paraffin-Embedded Tissues: A Molecular Portrait of Head and Neck Cancer Progression

Vyomesh Patel; Brian L. Hood; Alfredo A. Molinolo; Norman H. Lee; Thomas P. Conrads; John C. Braisted; David B. Krizman; Timothy D. Veenstra; J. Silvio Gutkind

Purpose: Squamous cell carcinoma of the head and neck (HNSCC), the sixth most prevalent cancer among men worldwide, is associated with poor prognosis, which has improved only marginally over the past three decades. A proteomic analysis of HNSCC lesions may help identify novel molecular targets for the early detection, prevention, and treatment of HNSCC. Experimental Design: Laser capture microdissection was combined with recently developed techniques for protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues and a novel proteomics platform. Approximately 20,000 cells procured from FFPE tissue sections of normal oral epithelium and well, moderately, and poorly differentiated HNSCC were processed for mass spectrometry and bioinformatic analysis. Results: A large number of proteins expressed in normal oral epithelium and HNSCC, including cytokeratins, intermediate filaments, differentiation markers, and proteins involved in stem cell maintenance, signal transduction, migration, cell cycle regulation, growth and angiogenesis, matrix degradation, and proteins with tumor suppressive and oncogenic potential, were readily detected. Of interest, the relative expression of many of these molecules followed a distinct pattern in normal squamous epithelia and well, moderately, and poorly differentiated HNSCC tumor tissues. Representative proteins were further validated using immunohistochemical studies in HNSCC tissue sections and tissue microarrays. Conclusions: The ability to combine laser capture microdissection and in-depth proteomic analysis of FFPE tissues provided a wealth of information regarding the nature of the proteins expressed in normal squamous epithelium and during HNSCC progression, which may allow the development of novel biomarkers of diagnostic and prognostic value and the identification of novel targets for therapeutic intervention in HNSCC.


Genome Biology | 2003

Assessing unmodified 70-mer oligonucleotide probe performance on glass-slide microarrays

Hong-Ying Wang; Renae L. Malek; Anne E. Kwitek; Andrew S. Greene; Truong Luu; Babak Behbahani; Bryan Frank; John Quackenbush; Norman H. Lee

BackgroundLong oligonucleotide microarrays are potentially more cost- and management-efficient than cDNA microarrays, but there is little information on the relative performance of these two probe types. The feasibility of using unmodified oligonucleotides to accurately measure changes in gene expression is also unclear.ResultsUnmodified sense and antisense 70-mer oligonucleotides representing 75 known rat genes and 10 Arabidopsis control genes were synthesized, printed and UV cross-linked onto glass slides. Printed alongside were PCR-amplified cDNA clones corresponding to the same genes, enabling us to compare the two probe types simultaneously. Our study was designed to evaluate the mRNA profiles of heart and brain, along with Arabidopsis cRNA spiked into the labeling reaction at different relative copy number. Hybridization signal intensity did not correlate with probe type but depended on the extent of UV irradiation. To determine the effect of oligonucleotide concentration on hybridization signal, 70-mers were serially diluted. No significant change in gene-expression ratio or loss in hybridization signal was detected, even at the lowest concentration tested (6.25 μm). In many instances, signal intensity actually increased with decreasing concentration. The correlation coefficient between oligonucleotide and cDNA probes for identifying differentially expressed genes was 0.80, with an average coefficient of variation of 13.4%. Approximately 8% of the genes showed discordant results with the two probe types, and in each case the cDNA results were more accurate, as determined by real-time PCR.ConclusionsMicroarrays of UV cross-linked unmodified oligonucleotides provided sensitive and specific measurements for most of the genes studied.


Cancer Research | 2010

Voltage-Gated Na + Channel SCN5A Is a Key Regulator of a Gene Transcriptional Network That Controls Colon Cancer Invasion

Carrie D. House; Charles J. Vaske; Arnold M. Schwartz; Vincent Obias; Bryan Frank; Truong Luu; Narine Sarvazyan; Rosalyn B. Irby; Robert L. Strausberg; Tim G. Hales; Joshua M. Stuart; Norman H. Lee

Voltage-gated Na(+) channels (VGSC) have been implicated in the metastatic potential of human breast, prostate, and lung cancer cells. Specifically, the SCN5A gene encoding the VGSC isotype Na(v)1.5 has been defined as a key driver of human cancer cell invasion. In this study, we examined the expression and function of VGSCs in a panel of colon cancer cell lines by electrophysiologic recordings. Na(+) channel activity and invasive potential were inhibited pharmacologically by tetrodotoxin or genetically by small interfering RNAs (siRNA) specifically targeting SCN5A. Clinical relevance was established by immunohistochemistry of patient biopsies, with strong Na(v)1.5 protein staining found in colon cancer specimens but little to no staining in matched-paired normal colon tissues. We explored the mechanism of VGSC-mediated invasive potential on the basis of reported links between VGSC activity and gene expression in excitable cells. Probabilistic modeling of loss-of-function screens and microarray data established an unequivocal role of VGSC SCN5A as a high level regulator of a colon cancer invasion network, involving genes that encompass Wnt signaling, cell migration, ectoderm development, response to biotic stimulus, steroid metabolic process, and cell cycle control. siRNA-mediated knockdown of predicted downstream network components caused a loss of invasive behavior, demonstrating network connectivity and its function in driving colon cancer invasion.

Collaboration


Dive into the Norman H. Lee's collaboration.

Top Co-Authors

Avatar

Bi-Dar Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bryan Frank

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Truong Luu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renae L. Malek

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramez Andrawis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark D. Adams

J. Craig Venter Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge