Greg Lawrence
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Greg Lawrence.
The Plant Cell | 1995
Greg Lawrence; E J Finnegan; Michael A. Ayliffe; Jeffery G. Ellis
The L6 rust resistance gene from flax was cloned after tagging with the maize transposable element Activator. The gene is predicted to encode two products of 1294 and 705 amino acids that result from alternatively spliced transcripts. The longer product is similar to the products of two other plant disease resistance genes, the tobacco mosaic virus resistance gene N of tobacco and the bacterial resistance gene RPS2 of Arabidopsis. The similarity involves the presence of a nucleotide (ATP/GTP) binding site and several other amino acid motifs of unknown function in the N-terminal half of the polypeptides and a leucine-rich region in the C-terminal half. The truncated product of L6, which lacks most of the leucine-rich C-terminal region, is similar to the truncated product that is predicted from an alternative transcript of the N gene. The L6, N, and RPS2 genes, which control resistance to three widely different pathogen types, are the foundation of a class of plant disease resistance genes that can be referred to as nucleotide binding site/leucine-rich repeat resistance genes.
The Plant Cell | 1997
Peter A. Anderson; Greg Lawrence; B C Morrish; Michael A. Ayliffe; E J Finnegan; Jeffery G. Ellis
The M rust resistance gene from flax was cloned after two separate approaches, an analysis of spontaneous M mutants with an L6 gene-derived DNA probe and tagging with the maize transposon Activator, independently identified the same gene. The gene encodes a protein of the nucleotide binding site leucine-rich repeat class and is related (86% nucleotide identity) to the unlinked L6 rust resistance gene. In contrast to the L locus, which contains a single gene with multiple alleles, approximately 15 related genes occur at the complex M locus, with only one encoding the M resistance specificity. The M protein contains two direct repeats of 147 and 149 amino acids in the C-terminal part of the leucine-rich region. Three mutant alleles of M encoding a product containing a single repeat unit of 154 amino acids were isolated. The mutant DNA sequences probably occurred by unequal intragenic exchange in the coding region of the repeats. The recombinant alleles lost M resistance and gained no detectable new resistance specificity.
Theoretical and Applied Genetics | 2005
Rohit Mago; Harbans Bariana; Ian S. Dundas; Wolfgang Spielmeyer; Greg Lawrence; Anthony J. Pryor; Jeff Ellis
The use of major resistance genes is the most cost-effective strategy for preventing stem rust epidemics in Australian wheat crops. The long-term success of this strategy is dependent on combining resistance genes that are effective against all predominant races of the pathogen, a task greatly assisted by the use of molecular markers linked to individual resistance genes. The wheat stem rust resistance genes Sr24 and Sr26 (derived from Agropyron elongatum) and SrR and Sr31 (derived from rye) are available in wheat as segments of alien chromosome translocated to wheat chromosomes. Each of these genes provides resistance to all races of wheat stem rust currently found in Australia .We have developed robust PCR markers for Sr24 and Sr26 (this study) and SrR and Sr31 (previously reported) that are applicable across a wide selection of Australian wheat germplasm. Wheat lines have recently become available in which the size of the alien segments containing Sr26, SrR and Sr31 has been reduced. Newly developed PCR-markers can be used to identify the presence of the shorter alien segment in all cases. Assuming that these genes have different gene-for-gene specificities and that the wheat industry will discourage the use of varieties carrying single genes only, the newly developed PCR markers will facilitate the incorporation of two or more of the genes Sr24, Sr26, SrR and Sr31 into wheat lines and have the potential to provide durable control to stem rust in Australia and elsewhere.
Theoretical and Applied Genetics | 1986
Greg Lawrence; R. Appels
SummaryThe nucleolus organizer region located on the short arm of chromosome 1R of rye consists of a large cluster of genes that code for ribosomal RNA (designated the Nor-R1 locus). The genes in the cluster are separated by spacer regions which can vary in length in different rye lines. Differences in the spacer regions were scored in two families of F2 progeny. Segregation also occurred, in one or both of the families, at two seed protein loci and at two isozyme loci also located on chromosome 1R. The seed protein loci were identified as the Sec 1 locus controlling ω-secalins located on the short arm of chromosome 1R and the Sec 3 locus controlling high-molecular-weight secalins located on the long arm of 1R. The two isozyme loci were the Gpi-R1 locus controlling glucose-phosphate isomerase isozymes and the Pgd 2 locus controlling phosphogluconate dehydrogenase isozymes. The data indicated linkage between all five loci and map distances were calculated. The results indicate a gene order: Pgd 2 ... Sec 3 ... [centromere] ... Nor-R1 ... Gpi-R1 ... Sec 1. Evidence was obtained that rye possesses a minor 5S RNA locus (chromosome location unknown) in addition to the major 5S RNA locus previously shown to be located on the short arm of chromosome 1R.
Molecular Plant-microbe Interactions | 2005
Paul Howles; Greg Lawrence; Jean Finnegan; Helen G. McFadden; Michael A. Ayliffe; Peter N. Dodds; Jeff Ellis
L6 is a nucleotide binding site-leucine rich repeat (NBS-LRR) gene that confers race-specific resistance in flax (Linum usitatissimum) to strains of flax rust (Melampsora lini) that carry avirulence alleles of the AvrL567 gene but not to rust strains that carry only the virulence allele. Several mutant and recombinant forms of L6 were made that altered either the methionine-histidine-aspartate (MHD) motif conserved in the NBS domain of resistance proteins or exchanged the short domain C-terminal to the LRR region that is highly variable among L allele products. In transgenic flax some of these alleles are autoactive; they cause a gene dosage-dependent dwarf phenotype and constitutive expression of genes that are markers for the plant defense response. Their effects and penetrance ranged from extreme to mild in their degree of plant stunting, survival, and reproduction. Dwarf plants were also resistant to flax rust strains virulent to wild-type L6 plants, and this nonspecific resistance was associated with a hypersensitive response (HR) at the site of rust infection. The strongest autoactive allele, expressed in Arabidopsis from an ethanol-inducible promoter, gave rise to plant death dependent on the enhanced disease susceptibility 1 (EDS1) gene, which indicates that the mutant flax (Linaceae) L6 gene can signal cell death through a defined disease-resistance pathway in a different plant family (Brassicaceae).
Journal of Virology | 2008
Suzanne L. Elliott; Andreas Suhrbier; John J. Miles; Greg Lawrence; Stephanie J. Pye; Thuy Le; Andrew Rosenstengel; Tam Nguyen; Anthony Allworth; Scott R. Burrows; John J. Cox; David Pye; Denis J. Moss; Mandvi Bharadwaj
ABSTRACT A single blind, randomized, placebo-controlled, single-center phase I clinical trial of a CD8+ T-cell peptide epitope vaccine against infectious mononucleosis was conducted with 14 HLA B*0801-positive, Epstein-Barr virus (EBV)-seronegative adults. The vaccine comprised the HLA B*0801-restricted peptide epitope FLRGRAYGL and tetanus toxoid formulated in a water-in-oil adjuvant, Montanide ISA 720. FLRGRAYGL-specific responses were detected in 8/9 peptide-vaccine recipients and 0/4 placebo vaccine recipients by gamma interferon enzyme-linked immunospot assay and/or limiting-dilution analysis. The same T-cell receptor Vβ CDR3 sequence that is found in FLRGRAYGL-specific T cells from most EBV-seropositive individuals could also be detected in the peripheral blood of vaccine recipients. The vaccine was well tolerated, with the main side effect being mild to moderate injection site reactions. After a 2- to 12-year follow-up, 1/2 placebo vaccinees who acquired EBV developed infectious mononucleosis, whereas 4/4 vaccinees who acquired EBV after completing peptide vaccination seroconverted asymptomatically. Single-epitope vaccination did not predispose individuals to disease, nor did it significantly influence development of a normal repertoire of EBV-specific CD8+ T-cell responses following seroconversion.
Molecular Plant-microbe Interactions | 2012
Daigo Takemoto; Maryam Rafiqi; Ursula Hurley; Greg Lawrence; Maud Bernoux; Adrienne R. Hardham; Jeffrey G. Ellis; Peter N. Dodds; David A. Jones
To investigate the role of N-terminal domains of plant disease resistance proteins in membrane targeting, the N termini of a number of Arabidopsis and flax disease resistance proteins were fused to green fluorescent protein (GFP) and the fusion proteins localized in planta using confocal microscopy. The N termini of the Arabidopsis RPP1-WsB and RPS5 resistance proteins and the PBS1 protein, which is required for RPS5 resistance, targeted GFP to the plasma membrane, and mutation of predicted myristoylation and potential palmitoylation sites resulted in a shift to nucleocytosolic localization. The N-terminal domain of the membrane-attached Arabidopsis RPS2 resistance protein was targeted incompletely to the plasma membrane. In contrast, the N-terminal domains of the Arabidopsis RPP1-WsA and flax L6 and M resistance proteins, which carry predicted signal anchors, were targeted to the endomembrane system, RPP1-WsA to the endoplasmic reticulum and the Golgi apparatus, L6 to the Golgi apparatus, and M to the tonoplast. Full-length L6 was also targeted to the Golgi apparatus. Site-directed mutagenesis of six nonconserved amino acid residues in the signal anchor domains of L6 and M was used to change the localization of the L6 N-terminal fusion protein to that of M and vice versa, showing that these residues control the targeting specificity of the signal anchor. Replacement of the signal anchor domain of L6 by that of M did not affect L6 protein accumulation or resistance against flax rust expressing AvrL567 but removal of the signal anchor domain reduced L6 protein accumulation and L6 resistance, suggesting that membrane attachment is required to stabilize the L6 protein.
Fungal Biology | 2001
Michael A. Ayliffe; Peter N. Dodds; Greg Lawrence
A Melampsora lini β-tubulin gene and flanking sequence has been isolated and characterised. The gene contains 8 introns, is expressed in germinating urediospores and vegetative mycelia and encodes a 448 amino acid protein that is similar to other fungal β-tubulin genes. Evidence for a second β-tubulin gene within the M. lini genome is also presented. The predicted M. lini β-tubulin protein was compared with 34 other fungal β-tubulin proteins in a phylogenetic analysis and, in general, good agreement was observed between the derived β-tubulin based phylogeny and the current taxonomic status of these species. However, a second β-tubulin protein found in five fungal species is atypical when compared to other fungal β-tubulin proteins. Analysis of intron positions within 33 fungal β-tubulin genes showed that intron location was generally characteristic of the fungal class, with euascomycete fungi showing particularly striking conservation of intron position, although intron number was variable and intron sequences showed little conservation.
Theoretical and Applied Genetics | 1992
Jeff Ellis; E J Finnegan; Greg Lawrence
SummaryA line of flax, homozygous for four genes controlling resistance to flax rust, was transformed with T-DNA vectors carrying the maize transposable elements Ac and Ds to assess whether transposition frequency would be high enough to allow transposon tagging of the resistance genes. Transposition was much less frequent in flax than in Solanaceous hosts such as tobacco, tomato and potato. Transposition frequency in callus tissue, but not in plants, was increased by modifications to the transposase gene of Ac. Transactivation of the excision of a Ds element was achieved by expressing a cDNA copy of the Ac transposase gene from the Agrobacterium T-DNA 2′ promoter. Progeny of three plants transformed with Ac and 15 plants transformed with Ds and the transposase gene, were examined for transposition occurring in the absence of selection. Transposition was observed in the descendants of only one plant which contained at least nine copies of Ac. Newly transposed Ac elements were observed in 25–30% of the progeny of some members of this family and one active Ac element was located 28.8 (SE=6.3) map units from the L6 rust-resistance gene. This family will be potentially useful in our resistance gene tagging program.
Crop & Pasture Science | 2007
Jeffrey G. Ellis; Rohit Mago; R. Kota; Peter N. Dodds; Helen G. McFadden; Greg Lawrence; Wolfgang Spielmeyer; Evans S. Lagudah
Although chemical control is available for rust diseases in wheat, economic and environmental factors favour genetic solutions. Maintenance and improvement of levels of resistance and durability of the genetic control of the 3 wheat rust diseases will occur with the application of DNA markers for pyramiding resistance genes. Information about the molecular basis of rust resistance, including durable, adult-plant resistance, coming from studies in model species such as flax and flax rust and from studies of wheat and barley, will provide knowledge for new biotechnological approaches to rust resistance. Increasing cereal gene sequence data will improve the efficiency of cloning disease resistance genes and, together with the rapid progress in understanding the molecular basis of rust resistance, will make it possible to construct transgenic plants with multiple rust resistance genes at a single locus, which will provide efficient breeding and increased durability of rust resistance.
Collaboration
Dive into the Greg Lawrence's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs