Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael A. Ayliffe is active.

Publication


Featured researches published by Michael A. Ayliffe.


Nature Reviews Genetics | 2004

Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes

Jeremy N. Timmis; Michael A. Ayliffe; Chun Y. Huang; William Martin

Genome sequences reveal that a deluge of DNA from organelles has constantly been bombarding the nucleus since the origin of organelles. Recent experiments have shown that DNA is transferred from organelles to the nucleus at frequencies that were previously unimaginable. Endosymbiotic gene transfer is a ubiquitous, continuing and natural process that pervades nuclear DNA dynamics. This relentless influx of organelle DNA has abolished organelle autonomy and increased nuclear complexity.


The Plant Cell | 1995

The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N.

Greg Lawrence; E J Finnegan; Michael A. Ayliffe; Jeffery G. Ellis

The L6 rust resistance gene from flax was cloned after tagging with the maize transposable element Activator. The gene is predicted to encode two products of 1294 and 705 amino acids that result from alternatively spliced transcripts. The longer product is similar to the products of two other plant disease resistance genes, the tobacco mosaic virus resistance gene N of tobacco and the bacterial resistance gene RPS2 of Arabidopsis. The similarity involves the presence of a nucleotide (ATP/GTP) binding site and several other amino acid motifs of unknown function in the N-terminal half of the polypeptides and a leucine-rich region in the C-terminal half. The truncated product of L6, which lacks most of the leucine-rich C-terminal region, is similar to the truncated product that is predicted from an alternative transcript of the N gene. The L6, N, and RPS2 genes, which control resistance to three widely different pathogen types, are the foundation of a class of plant disease resistance genes that can be referred to as nucleotide binding site/leucine-rich repeat resistance genes.


The Plant Cell | 2006

Haustorially Expressed Secreted Proteins from Flax Rust Are Highly Enriched for Avirulence Elicitors

Ann-Maree Catanzariti; Peter N. Dodds; Gregory J. Lawrence; Michael A. Ayliffe; Jeffrey G. Ellis

Rust fungi, obligate biotrophs that cause disease and yield losses in crops such as cereals and soybean (Glycine max), obtain nutrients from the host through haustoria, which are specialized structures that develop within host cells. Resistance of flax (Linum usitatissimum) to flax rust (Melampsora lini) involves the induction of a hypersensitive cell death response at haustoria formation sites, governed by gene-for-gene recognition between host resistance and pathogen avirulence genes. We identified genes encoding haustorially expressed secreted proteins (HESPs) by screening a flax rust haustorium-specific cDNA library. Among 429 unigenes, 21 HESPs were identified, one corresponding to the AvrL567 gene. Three other HESPs cosegregated with the independent AvrM, AvrP4, and AvrP123 loci. Expression of these genes in flax induced resistance gene–mediated cell death with the appropriate specificity, confirming their avirulence activity. AvrP4 and AvrP123 are Cys-rich proteins, and AvrP123 contains a Kazal Ser protease inhibitor signature, whereas AvrM contains no Cys residues. AvrP4 and AvrM induce cell death when expressed intracellularly, suggesting their translocation into plant cells during infection. However, secreted AvrM and AvrP4 also induce necrotic responses, with secreted AvrP4 more active than intracellular AvrP4, possibly as a result of enhanced formation of endoplasmic reticulum–dependent disulfide bonds. Addition of an endoplasmic reticulum retention signal inhibited AvrM-induced necrosis, suggesting that both AvrM and AvrP4 can reenter the plant cell after secretion in the absence of the pathogen.


The Plant Cell | 2004

The Melampsora lini AvrL567 Avirulence Genes Are Expressed in Haustoria and Their Products Are Recognized inside Plant Cells

Peter N. Dodds; Gregory J. Lawrence; Ann-Maree Catanzariti; Michael A. Ayliffe; Jeffrey G. Ellis

The Linum usitatissimum (flax) L gene alleles, which encode nucleotide binding site–Leu rich repeat class intracellular receptor proteins, confer resistance against the Melampsora lini (flax rust) fungus. At least 11 different L resistance specificities are known, and the corresponding avirulence genes in M. lini map to eight independent loci, some of which are complex and encode multiple specificities. We identified an M. lini cDNA marker that cosegregates in an F2 rust family with a complex locus determining avirulence on the L5, L6, and L7 resistance genes. Two related avirulence gene candidates, designated AvrL567-A and AvrL567-B, were identified in a genomic DNA contig from the avirulence allele, whereas the corresponding virulence allele contained a single copy of a related gene, AvrL567-C. Agrobacterium tumefaciens–mediated transient expression of the mature AvrL567-A or AvrL567-B (but not AvrL567-C) proteins as intracellular products in L. usitatissimum and Nicotiana tabacum (tobacco) induced a hypersensitive response–like necrosis that was dependent on coexpression of the L5, L6, or L7 resistance gene. An F1 seedling lethal or stunted growth phenotype also was observed when transgenic L. usitatissimum plants expressing AvrL567-A or AvrL567-B (but not AvrL567-C) were crossed to resistant lines containing L5, L6, or L7. The AvrL567 genes are expressed in rust haustoria and encode 127 amino acid secreted proteins. Intracellular recognition of these rust avirulence proteins implies that they are delivered into host cells across the plant membrane. Differences in the three AvrL567 protein sequences result from diversifying selection, which is consistent with a coevolutionary arms race.


The Plant Cell | 1997

Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region.

Peter A. Anderson; Greg Lawrence; B C Morrish; Michael A. Ayliffe; E J Finnegan; Jeffery G. Ellis

The M rust resistance gene from flax was cloned after two separate approaches, an analysis of spontaneous M mutants with an L6 gene-derived DNA probe and tagging with the maize transposon Activator, independently identified the same gene. The gene encodes a protein of the nucleotide binding site leucine-rich repeat class and is related (86% nucleotide identity) to the unlinked L6 rust resistance gene. In contrast to the L locus, which contains a single gene with multiple alleles, approximately 15 related genes occur at the complex M locus, with only one encoding the M resistance specificity. The M protein contains two direct repeats of 147 and 149 amino acids in the C-terminal part of the leucine-rich region. Three mutant alleles of M encoding a product containing a single repeat unit of 154 amino acids were isolated. The mutant DNA sequences probably occurred by unequal intragenic exchange in the coding region of the repeats. The recombinant alleles lost M resistance and gained no detectable new resistance specificity.


Nature | 2003

Direct measurement of the transfer rate of chloroplast DNA into the nucleus

Chun Y. Huang; Michael A. Ayliffe; Jeremy N. Timmis

Gene transfer from the chloroplast to the nucleus has occurred over evolutionary time. Functional gene establishment in the nucleus is rare, but DNA transfer without functionality is presumably more frequent. Here, we measured directly the transfer rate of chloroplast DNA (cpDNA) into the nucleus of tobacco plants (Nicotiana tabacum). To visualize this process, a nucleus-specific neomycin phosphotransferase gene (neoSTLS2) was integrated into the chloroplast genome, and the transfer of cpDNA to the nucleus was detected by screening for kanamycin-resistant seedlings in progeny. A screen for kanamycin-resistant seedlings was conducted with about 250,000 progeny produced by fertilization of wild-type females with pollen from plants containing cp-neoSTLS2. Sixteen plants of independent origin were identified and their progenies showed stable inheritance of neoSTLS2, characteristic of nuclear genes. Thus, we provide a quantitative estimate of one transposition event in about 16,000 pollen grains for the frequency of transfer of cpDNA to the nucleus. In addition to its evident role in organellar evolution, transposition of cpDNA to the nucleus in tobacco occurs at a rate that must have significant consequences for existing nuclear genes.


The Plant Cell | 1999

Molecular Characterization of the Maize Rp1-D Rust Resistance Haplotype and Its Mutants

Nicholas C. Collins; Jeff Drake; Michael A. Ayliffe; Qing Sun; Jeff Ellis; Scot H. Hulbert; Tony Pryor

The Rp1-D gene for resistance to maize common rust (Puccinia sorghi) is a member of a complex locus (haplotype) composed of Rp1-D and approximately eight other gene homologs. The identity of Rp1-D was demonstrated by using two independent gene-tagging approaches with the transposons Mutator and Dissociation. PIC20, a disease resistance (R) gene analog probe previously mapped to the rp1 locus, detected insertion of Dissociation in an Rp1-D mutation and excision in three revertants. Independent libraries probed with the PIC20 or Mutator probes resulted in isolation of the same gene sequence. Rp1-D belongs to the nucleotide binding site, leucine-rich repeat class of R genes. However, unlike the rust resistance genes M and L6 from flax, the maize Rp1-D gene does not encode an N-terminal domain with similarity to the signal transduction domains of the Drosophila Toll protein and mammalian interleukin-1 receptor. Although the abundance of transcripts of genes from the rp1 complex changed with leaf age, there was no evidence of any change due to inoculation with avirulent or virulent rust biotypes. A set of 27 Rp1-D mutants displayed at least nine different deletions of Rp1-D gene family members that were consistent with unequal crossing-over events. One mutation (Rp1-D*-24) resulted in deletion of all but one gene family member. Other unique deletions were observed in the disease lesion mimic Rp1-D*-21 and the partially susceptible mutant Rp1-D*-5. Different rp1 specificities have distinct DNA fingerprints (haplotypes). Analysis of recombinants between rp1 specificities indicated that recombination had occurred within the rp1 gene complex. Similar analyses indicated that the rust R genes at the rp5 locus, 2 centimorgans distal to rp1, are not closely related to Rp1-D.


Methods of Molecular Biology | 2006

Barley (Hordeum vulgare L.).

John V. Jacobsen; Ingrid Venables; Ming-Bo Wang; Peter R. Matthews; Michael A. Ayliffe; Frank Gubler

Crop improvement is limited by the availability of valuable traits in sexually compatible species. Access to new characters using genetic engineering would be of great value. Barley has been transformed using microprojectile bombardment and by direct gene transfer to protoplasts, but neither method has been able to produce fertile transformants in large numbers with simple transgene integration characteristics. Agrobacterium-mediated transformation was first achieved in 1997, and it has become the method of choice. Using immature embryos of the barley variety Golden Promise as the target organ, the binary vector pWBVec8 containing the intron-interrupted hygromycin resistance gene hph as the selectable marker, and selection of transformed cells on hygromycin, the Agrobacterium method is efficient, and the transgene insertion characteristics are superior to other methods. However, the procedure is strongly genotype dependent. In this report, we describe a transformation protocol giving details of plant culture, embryo isolation and preparation, vector details, Agrobacterium culture, infection methods, subsequent procedures for callus generation and plantlet production, and analysis of transgenic plants.


Science | 2013

The Gene Sr33, an Ortholog of Barley Mla Genes, Encodes Resistance to Wheat Stem Rust Race Ug99

Sambasivam Periyannan; John W Moore; Michael A. Ayliffe; Urmil Bansal; Xiaojing Wang; Li Huang; Karin R. Deal; Ming-Cheng Luo; Xiuying Kong; Harbans Bariana; Rohit Mago; R. A. McIntosh; Peter N. Dodds; Jan Dvorak; Evans Lagudah

Resistance May Not Be Futile Recently, Ug99, a particularly devastating strain of wheat stem rust fungus, has emerged, which could potentially threaten food security. Now, two genes have been cloned that offer resistance to Ug99. Saintenac et al. (p. 783, published online 27 June) cloned Sr35 from Triticum monococcum, a diploid wheat species not often cultivated. Periyannan et al. (p. 786, published online 27 June) cloned Sr33 from Aegilops tauschii, a diploid wild grass that contributed to the hexaploid genome of cultivated wheat. The genes both encode proteins that show features typical of other disease resistance proteins and offer opportunities to slow the pace of Ug99 progression. Two resistance genes are identified that could protect wheat from a virulent fungus that can severely reduce crop yields. Wheat stem rust, caused by the fungus Puccinia graminis f. sp. tritici, afflicts bread wheat (Triticum aestivum). New virulent races collectively referred to as “Ug99” have emerged, which threaten global wheat production. The wheat gene Sr33, introgressed from the wild relative Aegilops tauschii into bread wheat, confers resistance to diverse stem rust races, including the Ug99 race group. We cloned Sr33, which encodes a coiled-coil, nucleotide-binding, leucine-rich repeat protein. Sr33 is orthologous to the barley (Hordeum vulgare) Mla mildew resistance genes that confer resistance to Blumeria graminis f. sp. hordei. The wheat Sr33 gene functions independently of RAR1, SGT1, and HSP90 chaperones. Haplotype analysis from diverse collections of Ae. tauschii placed the origin of Sr33 resistance near the southern coast of the Caspian Sea.


Nature Genetics | 2015

A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat

John W Moore; Sybil A. Herrera-Foessel; Caixia Lan; Wendelin Schnippenkoetter; Michael A. Ayliffe; Julio Huerta-Espino; Morten Lillemo; Libby Viccars; Ricky J. Milne; Sambasivam Periyannan; Xiuying Kong; Wolfgang Spielmeyer; Mark J. Talbot; Harbans Bariana; John W. Patrick; Peter N. Dodds; Ravi P. Singh; Evans S. Lagudah

As there are numerous pathogen species that cause disease and limit yields of crops, such as wheat (Triticum aestivum), single genes that provide resistance to multiple pathogens are valuable in crop improvement. The mechanistic basis of multi-pathogen resistance is largely unknown. Here we use comparative genomics, mutagenesis and transformation to isolate the wheat Lr67 gene, which confers partial resistance to all three wheat rust pathogen species and powdery mildew. The Lr67 resistance gene encodes a predicted hexose transporter (LR67res) that differs from the susceptible form of the same protein (LR67sus) by two amino acids that are conserved in orthologous hexose transporters. Sugar uptake assays show that LR67sus, and related proteins encoded by homeoalleles, function as high-affinity glucose transporters. LR67res exerts a dominant-negative effect through heterodimerization with these functional transporters to reduce glucose uptake. Alterations in hexose transport in infected leaves may explain its ability to reduce the growth of multiple biotrophic pathogen species.

Collaboration


Dive into the Michael A. Ayliffe's collaboration.

Top Co-Authors

Avatar

Anthony J. Pryor

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Peter N. Dodds

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evans S. Lagudah

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Greg Lawrence

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Jeff Ellis

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Gregory J. Lawrence

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Jeffrey G. Ellis

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Rohit Mago

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge