Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shannon B. Johnson is active.

Publication


Featured researches published by Shannon B. Johnson.


Applied and Environmental Microbiology | 2007

Genetic Diversity and Potential Function of Microbial Symbionts Associated with Newly Discovered Species of Osedax Polychaete Worms

Shana K. Goffredi; Shannon B. Johnson; Robert C. Vrijenhoek

ABSTRACT We investigated the genetic diversity of symbiotic bacteria associated with two newly discovered species of Osedax from Monterey Canyon, CA, at 1,017-m (Osedax Monterey Bay sp. 3 “rosy” [Osedax sp. MB3]) and 381-m (Osedax Monterey Bay sp. 4 “yellow collar”) depths. Quantitative PCR and clone libraries of 16S rRNA gene sequences identified differences in the compositions and abundances of bacterial phylotypes associated with the newly discovered host species and permitted comparisons between adult Osedax frankpressi and juveniles that had recently colonized whalebones implanted at 2,891 m. The newly discovered Osedax species hosted Oceanospirillales symbionts that are related to Gammaproteobacteria associated with the previously described O. frankpressi and Osedax rubiplumus (S. K. Goffredi, V. J. Orphan, G. W. Rouse, L. Jahnke, T. Embaye, K. Turk, R. Lee, and R. C. Vrijenhoek, Environ. Microbiol. 7:1369-1378, 2005). In addition, Osedax sp. MB3 hosts a diverse and abundant population of additional bacteria dominated by Epsilonproteobacteria. Ultrastructural analysis of symbiont-bearing root tissues verified the enhanced microbial diversity of Osedax sp. MB3. Root tissues from the newly described host species and O. frankpressi all exhibited collagenolytic enzyme activity, which covaried positively with the abundance of symbiont DNA and negatively with mean adult size of the host species. Members of this unusual genus of bone-eating worms may form variable associations with symbiotic bacteria that allow for the observed differences in colonization and success in whale fall environments throughout the worlds oceans.


Journal of Shellfish Research | 2008

DNA BARCODING OF LEPETODRILUS LIMPETS REVEALS CRYPTIC SPECIES

Shannon B. Johnson; Robert C. Vrijenhoek

Abstract Lepetodrilid limpets are common inhabitants of deep-sea hydrothermal vents worldwide, but the frequent occurrence of morphologically cryptic species makes their identification very difficult. To facilitate these identifications, we provide DNA barcodes based on ∼1,000 bp of cytochrome-c-oxidase subunit I (COI), for 20 taxa within the genus Lepetodrilus. The method was also used to identify lepetodrilids that were found living on vent decapods. A preliminary phylogenetic analysis resolved relationships among members of several cryptic species complexes; however, COI sequences alone were unable to resolve higher-level systematic relationships caused by saturation of synonymous nucleotide substitutions.


The Biological Bulletin | 2006

Migration, Isolation, and Speciation of Hydrothermal Vent Limpets (Gastropoda; Lepetodrilidae) Across the Blanco Transform Fault

Shannon B. Johnson; Curtis R. Young; William J. Jones; Anders Warén; Robert C. Vrijenhoek

The Sovanco Fracture Zone and Blanco Transform Fault separate the Explorer, Juan de Fuca, and Gorda ridge systems of the northeastern Pacific Ocean. To test whether such offsets in the ridge axis create barriers to along-axis dispersal of the endemic hydrothermal vent animals, we examined the genetic structure of limpet populations previously identified as Lepetodrilus fucensis McLean, 1988 (Gastropoda, Lepetodrilidae). Mitochondrial DNA sequences and patterns of allozyme variation revealed no evidence that the 150-km-long Sovanco Fracture Zone impeded gene flow between the Explorer and Juan de Fuca populations. In contrast, the 450-km-long Blanco Transform Fault separates the limpets into highly divergent northern and southern lineages that we recognize as distinct species. We describe southern populations from the Gorda Ridge (Seacliff) and Escanaba Trough as Lepetodrilus gordensis new species and refer northern populations from the Explorer and Juan de Fuca ridge systems to L. fucensis sensu stricto. The species are similar morphologically, but L. gordensis lacks a sensory neck papilla and has a more tightly coiled teleconch. To assess the degree of isolation between these closely related species, we used the Isolation with Migration method to estimate the time of population splitting, effective sizes of the ancestral and derived populations, and rates of migration across the Blanco Transform Fault.


BMC Biology | 2009

A remarkable diversity of bone-eating worms (Osedax; Siboglinidae; Annelida)

Robert C. Vrijenhoek; Shannon B. Johnson; Greg W. Rouse

BackgroundBone-eating Osedax worms have proved to be surprisingly diverse and widespread. Including the initial description of this genus in 2004, five species that live at depths between 25 and 3,000 m in the eastern and western Pacific and in the north Atlantic have been named to date. Here, we provide molecular and morphological evidence for 12 additional evolutionary lineages from Monterey Bay, California. To assess their phylogenetic relationships and possible status as new undescribed species, we examined DNA sequences from two mitochondrial (COI and 16S rRNA) and three nuclear genes (H3, 18S and 28S rRNA).ResultsPhylogenetic analyses identified 17 distinct evolutionary lineages. Levels of sequence divergence among the undescribed lineages were similar to those found among the named species. The 17 lineages clustered into five well-supported clades that also differed for a number of key morphological traits. Attempts to determine the evolutionary age of Osedax depended on prior assumptions about nucleotide substitution rates. According to one scenario involving a molecular clock calibrated for shallow marine invertebrates, Osedax split from its siboglinid relatives about 45 million years ago when archeocete cetaceans first appeared and then diversified during the late Oligocene and early Miocene when toothed and baleen whales appeared. Alternatively, the use of a slower clock calibrated for deep-sea annelids suggested that Osedax split from its siboglinid relatives during the Cretaceous and began to diversify during the Early Paleocene, at least 20 million years before the origin of large marine mammals.ConclusionTo help resolve uncertainties about the evolutionary age of Osedax, we suggest that the fossilized bones from Cretaceous marine reptiles and late Oligocene cetaceans be examined for possible trace fossils left by Osedax roots. Regardless of the outcome, the present molecular evidence for strong phylogenetic concordance across five separate genes suggests that the undescribed Osedax lineages comprise evolutionarily significant units that have been separate from one another for many millions of years. These data coupled with ongoing morphological analyses provide a solid foundation for their future descriptions as new species.


Proceedings of the Royal Society of London B: Biological Sciences | 2008

Marine worms (genus Osedax ) colonize cow bones

William J. Jones; Shannon B. Johnson; Greg W. Rouse; Robert C. Vrijenhoek

Bone-eating worms of the genus Osedax colonized and grew on cow bones deployed at depths ranging from 385 to 2893 m in Monterey Bay, California. Colonization occurred as rapidly as two months following deployment of the cow bones, similar to the time it takes to colonize exposed whalebones. Some Osedax females found on the cow bones were producing eggs and some hosted dwarf males in their tubes. Morphological and molecular examinations of these worms confirmed the presence of six Osedax species, out of the eight species presently known from Monterey Bay. The ability of Osedax species to colonize, grow and reproduce on cow bones challenges previous notions that these worms are ‘whale-fall specialists.’


The Biological Bulletin | 2008

Acquisition of Dwarf Male “Harems” by Recently Settled Females of Osedax roseus n. sp. (Siboglinidae; Annelida)

Greg W. Rouse; K. Worsaae; Shannon B. Johnson; William J. Jones; Robert C. Vrijenhoek

After the deployment of several whale carcasses in Monterey Bay, California, a time-series analysis revealed the presence of a new species of Osedax, a genus of bone-eating siboglinid annelids. That species is described here as Osedax roseus n. sp. It is the fifth species described since the erection of this genus and, like its congeners, uses a ramifying network of “roots” to house symbiotic bacteria. In less than 2 months, Osedax roseus n. sp. colonized the exposed bones of a whale carcass deposited at 1018-m depth, and many of the females were fecund in about 3 months post-deployment. As with other Osedax spp., the females have dwarf males in their tube lumens. The males accrue over time until the sex ratio is markedly male-biased. This pattern of initial female settlement followed by gradual male accumulation is consistent with the hypothesis that male sex may be environmentally determined in Osedax. Of the previously described species in this genus, Osedax roseus n. sp. is most similar to O. rubiplumus, but it has several anatomical differences, as well as much smaller females, dwarf males, and eggs. Osedax roseus n. sp. is markedly divergent (minimally 16.6%) for mitochondrial cytochrome oxidase subunit I (mtCOI) sequences from any other Osedax species.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Larvae from deep-sea methane seeps disperse in surface waters

Shawn M. Arellano; Ahna Van Gaest; Shannon B. Johnson; Robert C. Vrijenhoek; Craig M. Young

Many species endemic to deep-sea methane seeps have broad geographical distributions, suggesting that they produce larvae with at least episodic long-distance dispersal. Cold-seep communities on both sides of the Atlantic share species or species complexes, yet larval dispersal across the Atlantic is expected to take prohibitively long at adult depths. Here, we provide direct evidence that the long-lived larvae of two cold-seep molluscs migrate hundreds of metres above the ocean floor, allowing them to take advantage of faster surface currents that may facilitate long-distance dispersal. We collected larvae of the ubiquitous seep mussel “Bathymodiolus” childressi and an associated gastropod, Bathynerita naticoidea, using remote-control plankton nets towed in the euphotic zone of the Gulf of Mexico. The timing of collections suggested that the larvae might disperse in the water column for more than a year, where they feed and grow to more than triple their original sizes. Ontogenetic vertical migration during a long larval life suggests teleplanic dispersal, a plausible explanation for the amphi-Atlantic distribution of “B.” mauritanicus and the broad western Atlantic distribution of B. naticoidea. These are the first empirical data to demonstrate a biological mechanism that might explain the genetic similarities between eastern and western Atlantic seep fauna.


Journal of Shellfish Research | 2008

NEW RECORD OF ''BATHYMODIOLUS'' MAURITANICUS COSEL 2002 FROM THE GULF OF CADIZ (NE ATLANTIC) MUD VOLCANOES

Luciana Génio; Shannon B. Johnson; Robert C. Vrijenhoek; Marina R. Cunha; Paul A. Tyler; Steffen Kiel; Crispin T. S. Little

Abstract The “Bathymodiolus” childressi group is the most geographically diverse assemblage of deep-sea mussel species. In this paper we consider several possible hypotheses to explain the present biogeographic distribution of the “B.” childressi species complex. Mussels were collected for the first time from mud volcanoes in the Gulf of Cadiz (NE Atlantic Ocean) during the training through research (TTR) 16 research expedition in 2006. Preliminary observations of the shell features indicate that they belong to the “B.” childressi species complex, which has been recognized as morphologically and genetically distinct from other Bathymodiolus species. Molecular analyses of two mitochondrial genes (COI-5 and ND4) were used to characterize the new mussel population from the Gulf of Cadiz (GOC) and to determine their phylogenetic relationships with other members of the “B.” childressi group. The results indicate that the GOC mussels are conspecific with “Bathymodiolus” mauritanicus Cosel (2002), described from West Africa margin, and support a previous hypothesis that “B.” mauritanicus is an amphi-Atlantic species


Biology Letters | 2011

Not whale-fall specialists, Osedax worms also consume fishbones

Greg W. Rouse; Shana K. Goffredi; Shannon B. Johnson; Robert C. Vrijenhoek

Marine annelid worms of the genus Osedax exploit sunken vertebrate bones for food. To date, the named species occur on whale or other mammalian bones, and it is argued that Osedax is a whale-fall specialist. To assess whether extant Osedax species could obtain nutrition from non-mammalian resources, we deployed teleost bones and calcified shark cartilage at approximately 1000 m depth for five months. Although the evidence from shark cartilage was inconclusive, the teleost bones hosted three species of Osedax, each of which also lives off whalebones. This suggests that rather than being a whale-fall specialist, Osedax has exploited and continues to exploit a variety of food sources. The ability of Osedax to colonize and to grow on fishbone lends credibility to a hypothesis that it might have split from its siboglinid relatives to assume the bone-eating lifestyle during the Cretaceous, well before the origin of marine mammals.


BMC Evolutionary Biology | 2011

Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

D. Katharine Coykendall; Shannon B. Johnson; Stephen A Karl; Richard A. Lutz; Robert C. Vrijenhoek

BackgroundDeep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift.ResultsGenetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically.ConclusionsCompared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events.

Collaboration


Dive into the Shannon B. Johnson's collaboration.

Top Co-Authors

Avatar

Robert C. Vrijenhoek

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar

Greg W. Rouse

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Shana K. Goffredi

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar

Julio B.J. Harvey

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lonny Lundsten

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar

William J. Jones

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Clague

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge