Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregg W.C. Thomas is active.

Publication


Featured researches published by Gregg W.C. Thomas.


Nature | 2014

Gibbon genome and the fast karyotype evolution of small apes.

Lucia Carbone; R. Alan Harris; Sante Gnerre; Krishna R. Veeramah; Belen Lorente-Galdos; John Huddleston; Thomas J. Meyer; Javier Herrero; Christian Roos; Bronwen Aken; Fabio Anaclerio; Nicoletta Archidiacono; Carl Baker; Daniel Barrell; Mark A. Batzer; Kathryn Beal; Antoine Blancher; Craig Bohrson; Markus Brameier; Michael S. Campbell; Claudio Casola; Giorgia Chiatante; Andrew Cree; Annette Damert; Pieter J. de Jong; Laura Dumas; Marcos Fernandez-Callejo; Paul Flicek; Nina V. Fuchs; Ivo Gut

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Nature Genetics | 2015

Convergent evolution of the genomes of marine mammals

Andrew D. Foote; Yue Liu; Gregg W.C. Thomas; Tomáš Vinař; Jessica Alföldi; Jixin Deng; Shannon Dugan; Cornelis E van Elk; Margaret E Hunter; Vandita Joshi; Ziad Khan; Christie Kovar; Sandra L. Lee; Kerstin Lindblad-Toh; Annalaura Mancia; Rasmus Nielsen; Xiang Qin; Jiaxin Qu; Brian J. Raney; Nagarjun Vijay; Jochen B. W. Wolf; Matthew W. Hahn; Donna M. Muzny; Kim C. Worley; M. Thomas P. Gilbert; Richard A. Gibbs

Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.


Molecular Biology and Evolution | 2013

Estimating Gene Gain and Loss Rates in the Presence of Error in Genome Assembly and Annotation Using CAFE 3

Mira V. Han; Gregg W.C. Thomas; Jose Lugo-Martinez; Matthew W. Hahn

Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication.

Michael J. Montague; Gang Li; Barbara Gandolfi; Razib Khan; Bronwen Aken; Steven M. J. Searle; Patrick Minx; LaDeana W. Hillier; Daniel C. Koboldt; Brian W. Davis; Carlos A. Driscoll; Christina S. Barr; Kevin Blackistone; Javier Quilez; Belen Lorente-Galdos; Tomas Marques-Bonet; Can Alkan; Gregg W.C. Thomas; Matthew W. Hahn; Marilyn Menotti-Raymond; Stephen J. O'Brien; Richard Wilson; Leslie A. Lyons; William J. Murphy; Wesley C. Warren

Significance We present highlights of the first complete domestic cat reference genome, to our knowledge. We provide evolutionary assessments of the feline protein-coding genome, population genetic discoveries surrounding domestication, and a resource of domestic cat genetic variants. These analyses span broadly, from carnivore adaptations for hunting behavior to comparative odorant and chemical detection abilities between cats and dogs. We describe how segregating genetic variation in pigmentation phenotypes has reached fixation within a single breed, and also highlight the genomic differences between domestic cats and wildcats. Specifically, the signatures of selection in the domestic cat genome are linked to genes associated with gene knockout models affecting memory, fear-conditioning behavior, and stimulus-reward learning, and potentially point to the processes by which cats became domesticated. Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae.


Molecular Biology and Evolution | 2015

Determining the Null Model for Detecting Adaptive Convergence from Genomic Data: A Case Study using Echolocating Mammals

Gregg W.C. Thomas; Matthew W. Hahn

Convergent evolution occurs when the same trait arises independently in multiple lineages. In most cases of phenotypic convergence such transitions are adaptive, so finding the underlying molecular causes of convergence can provide insight into the process of adaptation. Convergent evolution at the genomic level also lends itself to study by comparative methods, although molecular convergence can also occur by chance, adding noise to this process. Parker et al. studied convergence across the genomes of several mammals, including echolocating bats and dolphins (Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ. 2013. Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502:228-231). On the basis of a null distribution of site-specific likelihood support (SSLS) generated using simulated topologies, they concluded that there was evidence for genome-wide adaptive convergence between echolocating taxa. Here, we demonstrate that methods based on SSLS do not adequately measure convergence, and reiterate the use of an empirical null model that directly compares convergent substitutions between all pairs of species. We find that when the proper comparisons are made there is no surprising excess of convergence between echolocating mammals, even in sensory genes.


Genome Research | 2015

The genome of the vervet (Chlorocebus aethiops sabaeus)

Wesley C. Warren; Anna J. Jasinska; Raquel García-Pérez; Hannes Svardal; Chad Tomlinson; Mariano Rocchi; Nicoletta Archidiacono; Patrick Minx; Michael J. Montague; Kim Kyung; LaDeana W. Hillier; Milinn Kremitzki; Tina Graves; Colby Chiang; Jennifer F. Hughes; Nam Tran; Yu Huang; Vasily Ramensky; Oi Wa Choi; Yoon Jung; Christopher A. Schmitt; Nikoleta Juretic; Jessica Wasserscheid; Trudy R. Turner; Roger W. Wiseman; Jennifer J. Tuscher; Julie A. Karl; Jörn E. Schmitz; Roland Zahn; David H. O'Connor

We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.


Molecular Biology and Evolution | 2014

The human mutation rate is increasing, even as it slows

Gregg W.C. Thomas; Matthew W. Hahn

Substitution rates vary between species, and many explanations regarding the causes of this variation have been proposed. Here we consider how new genomic data on the per-generation mutation rate impinge on proposed hypotheses for substitution rate variation in primates. We propose that the generation-time effect as it is usually understood cannot explain the observed rate variation, but instead that selection for decreased somatic mutation rates can. By considering the disparate causes underlying mutation rate changes in recent human history, we also show that the per-generation mutation rate is increasing even as the per-cell-division rate is decreasing.


Scientific Reports | 2018

A model species for agricultural pest genomics: The genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

Sean D. Schoville; Yolanda H. Chen; Martin Andersson; Joshua B. Benoit; Anita Bhandari; Julia H. Bowsher; Kristian Brevik; Kaat Cappelle; Mei-Ju M. Chen; Anna K. Childers; Christopher Childers; Olivier Christiaens; Justin Clements; Elise M. Didion; Elena N. Elpidina; Patamarerk Engsontia; Markus Friedrich; Inmaculada García-Robles; Richard A. Gibbs; Chandan Goswami; Alessandro Grapputo; Kristina Gruden; Marcin Grynberg; Bernard Henrissat; Emily C. Jennings; Jeffery W. Jones; Megha Kalsi; Sher Afzal Khan; Abhishek Kumar; Fei Li

The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.


Nature | 2018

Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host

David Palesch; Steven E. Bosinger; Gregory K. Tharp; Thomas H. Vanderford; Mirko Paiardini; Ann Chahroudi; Zachary P. Johnson; Frank Kirchhoff; Beatrice H. Hahn; Robert B. Norgren; Nirav B. Patel; Donald L. Sodora; Reem Dawoud; Caro-Beth Stewart; Sara M. Seepo; R. Alan Harris; Yue Liu; Muthuswamy Raveendran; Yi Han; Adam C English; Gregg W.C. Thomas; Matthew W. Hahn; Lenore Pipes; Christopher E. Mason; Donna M. Muzny; Richard A. Gibbs; Daniel Sauter; Kim C. Worley; Jeffrey Rogers; Guido Silvestri

In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3–4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.


Genome Biology and Evolution | 2017

The Effects of Increasing the Number of Taxa on Inferences of Molecular Convergence

Gregg W.C. Thomas; Matthew W. Hahn; Yoonsoo Hahn

Convergent evolution provides insight into the link between phenotype and genotype. Recently, large-scale comparative studies of convergent evolution have become possible, but researchers are still trying to determine the best way to design these types of analyses. One aspect of molecular convergence studies that has not yet been investigated is how taxonomic sample size affects inferences of molecular convergence. Here we show that increased sample size decreases the amount of inferred molecular convergence associated with the three convergent transitions to a marine environment in mammals. The sampling of more taxa—both with and without the convergent phenotype—reveals that alleles associated only with marine mammals in small datasets are actually more widespread, or are not shared by all marine species. The sampling of more taxa also allows finer resolution of ancestral substitutions, revealing that they are not in fact on lineages leading to solely marine species. We revisit a previous study on marine mammals and find that only 7 of the reported 43 genes with convergent substitutions still show signs of convergence with a larger number of background species. However, four of those seven genes also showed signs of positive selection in the original analysis and may still be good candidates for adaptive convergence. Though our study is framed around the convergence of marine mammals, we expect our conclusions on taxonomic sampling are generalizable to any study of molecular convergence.

Collaboration


Dive into the Gregg W.C. Thomas's collaboration.

Top Co-Authors

Avatar

Matthew W. Hahn

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Richard A. Gibbs

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Christopher Childers

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Donna M. Muzny

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kim C. Worley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Alan Harris

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna K. Childers

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge