Grégoire Mignot
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grégoire Mignot.
Nature Medicine | 2007
Lionel Apetoh; François Ghiringhelli; Antoine Tesniere; Michel Obeid; Carla Ortiz; Alfredo Criollo; Grégoire Mignot; M. Chiara Maiuri; Evelyn Ullrich; Patrick Saulnier; Huan Yang; Sebastian Amigorena; Bernard Ryffel; Franck J. Barrat; Paul Saftig; Francis Lévi; Rosette Lidereau; Catherine Noguès; Jean-Paul Mira; Agnès Chompret; Virginie Joulin; Françoise Clavel-Chapelon; Jean Bourhis; Fabrice Andre; Suzette Delaloge; Thomas Tursz; Guido Kroemer; Laurence Zitvogel
Conventional cancer treatments rely on radiotherapy and chemotherapy. Such treatments supposedly mediate their effects via the direct elimination of tumor cells. Here we show that the success of some protocols for anticancer therapy depends on innate and adaptive antitumor immune responses. We describe in both mice and humans a previously unrecognized pathway for the activation of tumor antigen–specific T-cell immunity that involves secretion of the high-mobility-group box 1 (HMGB1) alarmin protein by dying tumor cells and the action of HMGB1 on Toll-like receptor 4 (TLR4) expressed by dendritic cells (DCs). During chemotherapy or radiotherapy, DCs require signaling through TLR4 and its adaptor MyD88 for efficient processing and cross-presentation of antigen from dying tumor cells. Patients with breast cancer who carry a TLR4 loss-of-function allele relapse more quickly after radiotherapy and chemotherapy than those carrying the normal TLR4 allele. These results delineate a clinically relevant immunoadjuvant pathway triggered by tumor cell death.
Nature Medicine | 2007
Michel Obeid; Antoine Tesniere; François Ghiringhelli; Gian Maria Fimia; Lionel Apetoh; Jean Luc Perfettini; Maria Castedo; Grégoire Mignot; Theoharis Panaretakis; Noelia Casares; Didier Métivier; Nathanael Larochette; Peter van Endert; Fabiola Ciccosanti; Mauro Piacentini; Laurence Zitvogel; Guido Kroemer
Anthracyclin-treated tumor cells are particularly effective in eliciting an anticancer immune response, whereas other DNA-damaging agents such as etoposide and mitomycin C do not induce immunogenic cell death. Here we show that anthracyclins induce the rapid, preapoptotic translocation of calreticulin (CRT) to the cell surface. Blockade or knockdown of CRT suppressed the phagocytosis of anthracyclin-treated tumor cells by dendritic cells and abolished their immunogenicity in mice. The anthracyclin-induced CRT translocation was mimicked by inhibition of the protein phosphatase 1/GADD34 complex. Administration of recombinant CRT or inhibitors of protein phosphatase 1/GADD34 restored the immunogenicity of cell death elicited by etoposide and mitomycin C, and enhanced their antitumor effects in vivo. These data identify CRT as a key feature determining anticancer immune responses and delineate a possible strategy for immunogenic chemotherapy.
Science | 2011
Mickaël Michaud; Isabelle Martins; Abdul Qader Sukkurwala; Sandy Adjemian; Yuting Ma; Patrizia Pellegatti; Shensi Shen; Oliver Kepp; Marie Scoazec; Grégoire Mignot; Santiago Rello-Varona; Laurie Menger; Erika Vacchelli; Lorenzo Galluzzi; François Ghiringhelli; Francesco Di Virgilio; Laurence Zitvogel; Guido Kroemer
The release of adenosine triphosphate through autophagy can promote antitumor immune responses. Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In response to chemotherapy, autophagy-competent, but not autophagy-deficient, cancers attracted dendritic cells and T lymphocytes into the tumor bed. Suppression of autophagy inhibited the release of adenosine triphosphate (ATP) from dying tumor cells. Conversely, inhibition of extracellular ATP-degrading enzymes increased pericellular ATP in autophagy-deficient tumors, reestablished the recruitment of immune cells, and restored chemotherapeutic responses but only in immunocompetent hosts. Thus, autophagy is essential for the immunogenic release of ATP from dying cells, and increased extracellular ATP concentrations improve the efficacy of antineoplastic chemotherapies when autophagy is disabled.
Cancer Research | 2010
Julie Vincent; Grégoire Mignot; Fanny Chalmin; Sylvain Ladoire; Mélanie Bruchard; Angélique Chevriaux; François Martin; Lionel Apetoh; Cédric Rébé; François Ghiringhelli
Myeloid-derived suppressor cells (MDSC) accumulate in the spleen and tumor bed during tumor growth. They contribute to the immune tolerance of cancer notably by inhibiting the function of CD8(+) T cells. Thus, their elimination may hamper tumor growth by enhancing antitumor T-cell functions. We have previously reported that some anticancer agents relied on T cell-dependent anticancer responses to achieve maximal efficacy. However, the effect of anticancer agents on MDSC has remained largely unexplored. In this study, we observed that gemcitabine and 5-fluorouracil (5FU) were selectively cytotoxic on MDSC. In vivo, the treatment of tumor-bearing mice with 5FU led to a major decrease in the number of MDSC in the spleens and tumor beds of animals whereas no significant effect on T cells, natural killer cells, dendritic cells, or B cells was noted. Interestingly, 5FU showed a stronger efficacy over gemcitabine to deplete MDSC and selectively induced MDSC apoptotic cell death in vitro and in vivo. The elimination of MDSC by 5FU increased IFN-gamma production by tumor-specific CD8(+) T cells infiltrating the tumor and promoted T cell-dependent antitumor responses in vivo. Altogether, these findings suggest that the antitumor effect of 5FU is mediated, at least in part, by its selective cytotoxic action on MDSC.
Science | 2013
Sophie Viaud; Fabiana Saccheri; Grégoire Mignot; Takahiro Yamazaki; Romain Daillère; Dalil Hannani; David P. Enot; Christina Pfirschke; Camilla Engblom; Mikael J. Pittet; Andreas Schlitzer; Florent Ginhoux; Lionel Apetoh; Elisabeth Chachaty; Paul Louis Woerther; Gérard Eberl; Marion Bérard; Chantal Ecobichon; Dominique Clermont; Chantal Bizet; Valérie Gaboriau-Routhiau; Nadine Cerf-Bensussan; Paule Opolon; Nadia Yessaad; Eric Vivier; Bernhard Ryffel; Charles O. Elson; Joël Doré; Guido Kroemer; Patricia Lepage
The Microbiota Makes for Good Therapy The gut microbiota has been implicated in the development of some cancers, such as colorectal cancer, but—given the important role our intestinal habitants play in metabolism—they may also modulate the efficacy of certain cancer therapeutics. Iida et al. (p. 967) evaluated the impact of the microbiota on the efficacy of an immunotherapy [CpG (the cytosine, guanosine, phosphodiester link) oligonucleotides] and oxaliplatin, a platinum compound used as a chemotherapeutic. Both therapies were reduced in efficacy in tumor-bearing mice that lacked microbiota, with the microbiota important for activating the innate immune response against the tumors. Viaud et al. (p. 971) found a similar effect of the microbiota on tumor-bearing mice treated with cyclophosphamide, but in this case it appeared that the microbiota promoted an adaptive immune response against the tumors. The gut microbiota promote the efficacy of several antineoplastic agents in mice. Cyclophosphamide is one of several clinically important cancer drugs whose therapeutic efficacy is due in part to their ability to stimulate antitumor immune responses. Studying mouse models, we demonstrate that cyclophosphamide alters the composition of microbiota in the small intestine and induces the translocation of selected species of Gram-positive bacteria into secondary lymphoid organs. There, these bacteria stimulate the generation of a specific subset of “pathogenic” T helper 17 (pTH17) cells and memory TH1 immune responses. Tumor-bearing mice that were germ-free or that had been treated with antibiotics to kill Gram-positive bacteria showed a reduction in pTH17 responses, and their tumors were resistant to cyclophosphamide. Adoptive transfer of pTH17 cells partially restored the antitumor efficacy of cyclophosphamide. These results suggest that the gut microbiota help shape the anticancer immune response.
Journal of Clinical Investigation | 2010
Fanny Chalmin; Sylvain Ladoire; Grégoire Mignot; Julie Vincent; Mélanie Bruchard; Jean-Paul Remy-Martin; Wilfrid Boireau; Alain Rouleau; Benoit Simon; David Lanneau; Aurélie de Thonel; Gabriele Multhoff; Arlette Hamman; François Martin; Bruno Chauffert; Eric Solary; Laurence Zitvogel; Carmen Garrido; Bernhard Ryffel; Christophe Borg; Lionel Apetoh; Cédric Rébé; François Ghiringhelli
Myeloid-derived suppressor cells (MDSCs) have been identified in humans and mice as a population of immature myeloid cells with the ability to suppress T cell activation. They accumulate in tumor-bearing mice and humans and have been shown to contribute to cancer development. Here, we have isolated tumor-derived exosomes (TDEs) from mouse cell lines and shown that an interaction between TDE-associated Hsp72 and MDSCs determines the suppressive activity of the MDSCs via activation of Stat3. In addition, tumor-derived soluble factors triggered MDSC expansion via activation of Erk. TDE-associated Hsp72 triggered Stat3 activation in MDSCs in a TLR2/MyD88-dependent manner through autocrine production of IL-6. Importantly, decreasing exosome production using dimethyl amiloride enhanced the in vivo antitumor efficacy of the chemotherapeutic drug cyclophosphamide in 3 different mouse tumor models. We also demonstrated that this mechanism is relevant in cancer patients, as TDEs from a human tumor cell line activated human MDSCs and triggered their suppressive function in an Hsp72/TLR2-dependent manner. Further, MDSCs from cancer patients treated with amiloride, a drug used to treat high blood pressure that also inhibits exosome formation, exhibited reduced suppressor functions. Collectively, our findings show in both mice and humans that Hsp72 expressed at the surface of TDEs restrains tumor immune surveillance by promoting MDSC suppressive functions.
Nature Medicine | 2013
Mélanie Bruchard; Grégoire Mignot; Valentin Derangère; Fanny Chalmin; Angélique Chevriaux; Frédérique Végran; Wilfrid Boireau; Benoit Simon; Bernhard Ryffel; Jean Louis Connat; Jean M. Kanellopoulos; François Martin; Cédric Rébé; Lionel Apetoh; François Ghiringhelli
Chemotherapeutic agents are widely used for cancer treatment. In addition to their direct cytotoxic effects, these agents harness the hosts immune system, which contributes to their antitumor activity. Here we show that two clinically used chemotherapeutic agents, gemcitabine (Gem) and 5-fluorouracil (5FU), activate the NOD-like receptor family, pyrin domain containing-3 protein (Nlrp3)-dependent caspase-1 activation complex (termed the inflammasome) in myeloid-derived suppressor cells (MDSCs), leading to production of interleukin-1β (IL-1β), which curtails anticancer immunity. Chemotherapy-triggered IL-1β secretion relied on lysosomal permeabilization and the release of cathepsin B, which bound to Nlrp3 and drove caspase-1 activation. MDSC-derived IL-1β induced secretion of IL-17 by CD4+ T cells, which blunted the anticancer efficacy of the chemotherapy. Accordingly, Gem and 5FU exerted higher antitumor effects when tumors were established in Nlrp3−/− or Casp1−/− mice or wild-type mice treated with interleukin-1 receptor antagonist (IL-1Ra). Altogether, these results identify how activation of the Nlrp3 inflammasome in MDSCs by 5FU and Gem limits the antitumor efficacy of these chemotherapeutic agents.
OncoImmunology | 2014
Oliver Kepp; Laura Senovilla; Ilio Vitale; Erika Vacchelli; Sandy Adjemian; Patrizia Agostinis; Lionel Apetoh; Fernando Aranda; Vincenzo Barnaba; Norma Bloy; Laura Bracci; Karine Breckpot; David Brough; Aitziber Buqué; Maria G. Castro; Mara Cirone; María I. Colombo; Isabelle Cremer; Sandra Demaria; Luciana Dini; Aristides G. Eliopoulos; Alberto Faggioni; Silvia C. Formenti; Jitka Fucikova; Lucia Gabriele; Udo S. Gaipl; Jérôme Galon; Abhishek D. Garg; François Ghiringhelli; Nathalia A. Giese
Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named “immunogenic cell death” (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.
Journal of Innate Immunity | 2010
Anne-Laure Joly; Guillaume Wettstein; Grégoire Mignot; François Ghiringhelli; Carmen Garrido
Stress or heat shock proteins (HSPs) 70 and 90 are powerful chaperones whose expression is induced in response to a wide variety of physiological and environmental insults. These proteins have different functions depending on their intracellular or extracellular location. Intracellular HSPs have a protective function. They allow the cells to survive potentially lethal conditions. The cytoprotective functions of HSPs can largely be explained by their anti-apoptotic properties. HSP70 and HSP90 can directly interact with different proteins of the tightly regulated programmed cell death machinery and thereby block the apoptotic process at distinct key points. In cancer cells, where the expression of HSP70 and/or HSP90 is frequently abnormally high, they participate in oncogenesis and in resistance to chemotherapy. Therefore, the inhibition of HSPs has become an interesting strategy in cancer therapy. In contrast to intracellular HSPs, extracellularly located or membrane-bound HSPs mediate immunological functions. They can elicit an immune response providing a link between innate and adaptive immune systems. In cancer, most immunotherapeutical approaches based on extracellular HSPs exploit their carrier function for immunogenic peptides. This review will focus on the roles of HSP70 and HSP90 in apoptosis and in innate immunity and how these functions are being exploited in cancer therapy.
Immunity | 2012
Fanny Chalmin; Grégoire Mignot; Mélanie Bruchard; Angélique Chevriaux; Frédérique Végran; Aziz Hichami; Sylvain Ladoire; Valentin Derangère; Julie Vincent; David Masson; Simon C. Robson; Gérard Eberl; Jean René Pallandre; Christophe Borg; Bernhard Ryffel; Lionel Apetoh; Cédric Rébé; François Ghiringhelli
Although Th17 cells are known to promote tissue inflammation and autoimmunity, their role during cancer progression remains elusive. Here, we showed that in vitro Th17 cells generated with the cytokines IL-6 and TGF-β expressed CD39 and CD73 ectonucleotidases, leading to adenosine release and the subsequent suppression of CD4(+) and CD8(+) T cell effector functions. The IL-6-mediated activation of the transcription factor Stat3 and the TGF-β-driven downregulation of Gfi-1 transcription factor were both essential for the expression of ectonucleotidases during Th17 cell differentiation. Stat3 supported whereas Gfi-1 repressed CD39 and CD73 expression by binding to their promoters. Accordingly, Th17 cells differentiated with IL-1β, IL-6, and IL-23 but without TGF-β did not express ectonucleotidases and were not immunosuppressive. Finally, adoptive transfer of Th17 cells induced by TGF-β and IL-6 promoted tumor growth in a CD39-dependent manner. Thus, ectonucleotidase expression supports the immunosuppressive fate of Th17 cells in cancer.