Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregor C. Leckebusch is active.

Publication


Featured researches published by Gregor C. Leckebusch.


Bulletin of the American Meteorological Society | 2013

IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms

Urs Neu; M. G. Akperov; Nina Bellenbaum; Rasmu S. Benestad; Richard Blender; Rodrigo Caballero; Angela Cocozza; Helen F. Dacre; Yang Feng; Klaus Fraedrich; Jens Grieger; Sergey K. Gulev; John Hanley; Tim Hewson; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Ina Kindem; Gregor C. Leckebusch; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Mareike Schuster; Ian Simmonds; Mark R. Sinclair; Michael Sprenger

The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of wea...


Bulletin of the American Meteorological Society | 2013

IMILAST – a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties.

Urs Neu; M. G. Akperov; Nina Bellenbaum; Rasmus Benestad; Richard Blender; Rodrigo Caballero; Angela Cocozza; Helen F. Dacre; Yang Feng; Klaus Fraedrich; Jens Grieger; Sergey K. Gulev; John Hanley; Tim Hewson; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Ina Kindem; Gregor C. Leckebusch; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Mareike Schuster; Ian Simmonds; Mark R. Sinclair; Michael Sprenger

The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of wea...


Journal of Climate | 2008

Changing Northern Hemisphere Storm Tracks in an Ensemble of IPCC Climate Change Simulations

Uwe Ulbrich; Joaquim G. Pinto; H. Kupfer; Gregor C. Leckebusch; Thomas Spangehl; Mark Reyers

Winter storm-track activity over the Northern Hemisphere and its changes in a greenhouse gas scenario (the Special Report on Emission Scenarios A1B forcing) are computed from an ensemble of 23 single runs from 16 coupled global climate models (CGCMs). All models reproduce the general structures of the observed climatological storm-track pattern under present-day forcing conditions. Ensemble mean changes resulting from anthropogenic forcing include an increase of baroclinic wave activity over the eastern North Atlantic, amounting to 5%–8% by the end of the twenty-first century. Enhanced activity is also found over the Asian continent and over the North Pacific near the Aleutian Islands. At high latitudes and over parts of the subtropics, activity is reduced. Variations of the individual models around the ensemble average signal are not small, with a median of the pattern correlation near r 0.5. There is, however, no evidence for a link between deviations in present-day climatology and deviations with respect to climate change.


Archive | 2013

Future Climate Projections

Silvio Gualdi; Samuel Somot; Wilhelm May; Sergio Castellari; Michel Déqué; Mario Adani; Vincenzo Artale; Alessio Bellucci; Joseph S. Breitgand; Adriana Carillo; Richard C. Cornes; Alessandro Dell’Aquila; Clotilde Dubois; Dimitrios Efthymiadis; Alberto Elizalde; Luis Gimeno; C. M. Goodess; Ali Harzallah; Simon O. Krichak; Franz G. Kuglitsch; Gregor C. Leckebusch; Blandine L’heveder; Laurent Li; Piero Lionello; Jürg Luterbacher; Annarita Mariotti; Antonio Navarra; Raquel Nieto; Katrin M. Nissen; Paolo Oddo

In this chapter we show results from an innovative multi-model system used to produce climate simulations with a realistic representation of the Mediterranean Sea. The models (hereafter simply referred to as the “CIRCE models”) are a set of five coupled climate models composed by a high-resolution Mediterranean Sea coupled with a relatively high-resolution atmospheric component and a global ocean, which allow, for the first time, to explore and assess the role of the Mediterranean Sea and its complex, small-scale dynamics in the climate of the region. In particular, they make it possible to investigate the influence that local air-sea feedbacks might exert on the mechanisms responsible for climate variability and change in the European continent, Middle East and Northern Africa. In many regards, they represent a new and innovative approach to the problem of regionalization of climate projections in the Mediterranean region.


Tellus A | 2010

Estimation of wind storm impacts over Western Germany under future climate conditions using a statistical-dynamical downscaling approach.

Joaquim G. Pinto; Christian P. Neuhaus; Gregor C. Leckebusch; Mark Reyers; M. J. Kerschgens

Abstract A statistical—dynamical regionalization approach is developed to assess possible changes in wind storm impacts. The method is applied to North Rhine-Westphalia (Western Germany) using the FOOT3DK mesoscale model for dynamical downscaling and ECHAM5/OM1 global circulation model climate projections. The method first classifies typical weather developments within the reanalysis period using K-means cluster algorithm. Most historical wind storms are associated with four weather developments (primary storm-clusters). Mesoscale simulations are performed for representative elements for all clusters to derive regional wind climatology. Additionally, 28 historical storms affecting Western Germany are simulated. Empirical functions are estimated to relate wind gust fields and insured losses. Transient ECHAM5/OM1 simulations show an enhanced frequency of primary storm-clusters and storms for 2060–2100 compared to 1960–2000. Accordingly, wind gusts increase over Western Germany, reaching locally +5% for 98th wind gust percentiles (A2-scenario). Consequently, storm losses are expected to increase substantially (+8% for A1B-scenario, +19% for A2-scenario). Regional patterns show larger changes over north-eastern parts of North Rhine-Westphalia than for western parts. For storms with return periods above 20 yr, loss expectations for Germany may increase by a factor of 2. These results document the method’s functionality to assess future changes in loss potentials in regional terms.


Meteorologische Zeitschrift | 2013

Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?

Uwe Ulbrich; Gregor C. Leckebusch; Jens Grieger; Mareike Schuster; M. G. Akperov; Mikhail Yu. Bardin; Yang Feng; Sergey K. Gulev; Masaru Inatsu; Kevin Keay; Sarah F. Kew; Margarida L. R. Liberato; Piero Lionello; I. I. Mokhov; Urs Neu; Joaquim G. Pinto; Christoph C. Raible; Marco Reale; Irina Rudeva; Ian Simmonds; Natalia Tilinina; Isabel F. Trigo; Sven Ulbrich; Xiaolan L. Wang; Heini Wernli

For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.


The Climate of the Mediterranean Region | 2012

Climate of the Mediterranean: synoptic patterns, temperature, precipitation, winds and their extremes

Uwe Ulbrich; Piero Lionello; Danijel Belušić; Jucundus Jacobeit; Peter Knippertz; Franz G. Kuglitsch; Gregor C. Leckebusch; Jürg Luterbacher; Maurizio Maugeri; P. Maheras; Katrin M. Nissen; V. Pavan; Joaquim G. Pinto; Hadas Saaroni; S. Seubert; Andrea Toreti; Elena Xoplaki; Baruch Ziv

This chapter considers a set of issues related to the synoptic climatology of the Mediterranean region (MR). The main Northern Hemisphere teleconnections affecting the MR and their role on temperature, precipitation, and atmospheric cyclones are described. The characteristics of the cyclones in the MR are presented. The role of teleconnections and atmospheric regimes on temperature and precipitation is discussed. The content includes extremes of temperature, precipitation, wind, and storminess (considering also marine aspects such as waves and storm surges).


Health & Place | 2015

Climate and socioeconomic influences on interannual variability of cholera in Nigeria

Gregor C. Leckebusch; Auwal F. Abdussalam

Cholera is one of the most important climate sensitive diseases in Nigeria that pose a threat to public health because of its fatality and endemic nature. This study aims to investigate the influences of meteorological and socioeconomic factors on the spatiotemporal variability of cholera morbidity and mortality in Nigeria. Stepwise multiple regression and generalised additive models were fitted for individual states as well as for three groups of the states based on annual precipitation. Different meteorological variables were analysed, taking into account socioeconomic factors that are potentially enhancing vulnerability (e.g. absolute poverty, adult literacy, access to pipe borne water). Results quantify the influence of both climate and socioeconomic variables in explaining the spatial and temporal variability of the disease incidence and mortality. Regional importance of different factors is revealed, which will allow further insight into the disease dynamics. Additionally, cross validated models suggest a strong possibility of disease prediction, which will help authorities to put effective control measures in place which depend on prevention, and or efficient response.


Weather, Climate, and Society | 2014

Climate Influences on Meningitis Incidence in Northwest Nigeria

Auwal F. Abdussalam; Andrew J. Monaghan; Vanja Dukic; Mary H. Hayden; Thomas M. Hopson; Gregor C. Leckebusch; John E. Thornes

AbstractNorthwest Nigeria is a region with a high risk of meningitis. In this study, the influence of climate on monthly meningitis incidence was examined. Monthly counts of clinically diagnosed hospital-reported cases of meningitis were collected from three hospitals in northwest Nigeria for the 22-yr period spanning 1990–2011. Generalized additive models and generalized linear models were fitted to aggregated monthly meningitis counts. Explanatory variables included monthly time series of maximum and minimum temperature, humidity, rainfall, wind speed, sunshine, and dustiness from weather stations nearest to the hospitals, and the number of cases in the previous month. The effects of other unobserved seasonally varying climatic and nonclimatic risk factors that may be related to the disease were collectively accounted for as a flexible monthly varying smooth function of time in the generalized additive models, s(t). Results reveal that the most important explanatory climatic variables are the monthly me...


Tellus A | 2014

Evaluating decadal predictions of northern hemispheric cyclone frequencies

Tim Kruschke; Henning W. Rust; Christopher Kadow; Gregor C. Leckebusch; Uwe Ulbrich

Mid-latitudinal cyclones are a key factor for understanding regional anomalies in primary meteorological parameters such as temperature or precipitation. Extreme cyclones can produce notable impacts on human society and economy, for example, by causing enormous economic losses through wind damage. Based on 41 annually initialised (1961–2001) hindcast ensembles, this study evaluates the ability of a single-model decadal forecast system (MPI-ESM-LR) to provide skilful probabilistic three-category forecasts (enhanced, normal or decreased) of winter (ONDJFM) extra-tropical cyclone frequency over the Northern Hemisphere with lead times from 1 yr up to a decade. It is shown that these predictions exhibit some significant skill, mainly for lead times of 2–5 yr, especially over the North Atlantic and Pacific. Skill for intense cyclones is generally higher than for all detected systems. A comparison of decadal hindcasts from two different initialisation techniques indicates that initialising from reanalysis fields yields slightly better results for the first forecast winter (month 10–15), while initialisation based on an assimilation experiment provides better skill for lead times between 2 and 5 yr. The reasons and mechanisms behind this predictive skill are subject to future work. Preliminary analyses suggest a strong relationship of the models skill over the North Atlantic with the ability to predict upper ocean temperatures modulating lower troposphere baroclinicity for the respective area and time scales.

Collaboration


Dive into the Gregor C. Leckebusch's collaboration.

Top Co-Authors

Avatar

Uwe Ulbrich

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Joaquim G. Pinto

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Markus G. Donat

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominik Renggli

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jens Grieger

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

S. Wild

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Tim Kruschke

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge