Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregório C. Faria is active.

Publication


Featured researches published by Gregório C. Faria.


Nature Materials | 2017

A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing

Yoeri van de Burgt; Ewout Lubberman; Elliot J. Fuller; Scott T Keene; Gregório C. Faria; Sapan Agarwal; Matthew Marinella; A. Alec Talin; Alberto Salleo

The brain is capable of massively parallel information processing while consuming only ∼1-100 fJ per synaptic event. Inspired by the efficiency of the brain, CMOS-based neural architectures and memristors are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODe switches at low voltage and energy (<10 pJ for 103 μm2 devices), displays >500 distinct, non-volatile conductance states within a ∼1 V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.


Angewandte Chemie | 2014

Enhancing Fullerene-Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell†

Bob C. Schroeder; Zhe Li; Michael A. Brady; Gregório C. Faria; Raja Shahid Ashraf; Christopher J. Takacs; John S. Cowart; Duc T. Duong; Kar Ho Chiu; Ching Hong Tan; João T. Cabral; Alberto Salleo; Michael L. Chabinyc; James R. Durrant; Iain McCulloch

Cost-effective, solution-processable organic photovoltaics (OPV) present an interesting alternative to inorganic silicon-based solar cells. However, one of the major remaining challenges of OPV devices is their lack of long-term operational stability, especially at elevated temperatures. The synthesis of a fullerene dumbbell and its use as an additive in the active layer of a PCDTBT:PCBM-based OPV device is reported. The addition of only 20 % of this novel fullerene not only leads to improved device efficiencies, but more importantly also to a dramatic increase in morphological stability under simulated operating conditions. Dynamic secondary ion mass spectrometry (DSIMS) and TEM are used, amongst other techniques, to elucidate the origins of the improved morphological stability.


Journal of the American Chemical Society | 2014

A new tetracyclic lactam building block for thick, broad-bandgap photovoltaics.

Renee Kroon; Amaia Diaz de Zerio Mendaza; Scott Himmelberger; Jonas Bergqvist; Olof Bäcke; Gregório C. Faria; Feng Gao; Abdulmalik Obaid; Wenliu Zhuang; Desta Antenehe Gedefaw; Eva Olsson; Olle Inganäs; Alberto Salleo; Christian Müller; Mats R. Andersson

A new tetracyclic lactam building block for polymer semiconductors is reported that was designed to combine the many favorable properties that larger fused and/or amide-containing building blocks can induce, including improved solid-state packing, high charge carrier mobility, and improved charge separation. Copolymerization with thiophene resulted in a semicrystalline conjugated polymer, PTNT, with a broad bandgap of 2.2 eV. Grazing incidence wide-angle X-ray scattering of PTNT thin films revealed a strong tendency for face-on π-stacking of the polymer backbone, which was retained in PTNT:fullerene blends. Corresponding solar cells featured a high open-circuit voltage of 0.9 V, a fill factor around 0.6, and a power conversion efficiency as high as 5% for >200 nm thick active layers, regardless of variations in blend stoichiometry and nanostructure. Moreover, efficiencies of >4% could be retained when thick active layers of ∼400 nm were employed. Overall, these values are the highest reported for a conjugated polymer with such a broad bandgap and are unprecedented in materials for tandem and particularly ternary blend photovoltaics. Hence, the newly developed tetracyclic lactam unit has significant potential as a conjugated building block in future organic electronic materials.


ACS Applied Materials & Interfaces | 2013

Order induced charge carrier mobility enhancement in columnar liquid crystal diodes.

Juliana Eccher; Gregório C. Faria; Harald Bock; Heinz von Seggern; Ivan H. Bechtold

Discotic molecules comprising a rigid aromatic core and flexible side chains have been promisingly applied in OLEDs as self-organizing organic semiconductors. Due to their potentially high charge carrier mobility along the columns, device performance can be readily improved by proper alignment of columns throughout the bulk. In the present work, the charge mobility was increased by 5 orders of magnitude due to homeotropic columnar ordering induced by the boundary interfaces during thermal annealing in the mesophase. State-of-the-art diodes were fabricated using spin-coated films whose homeotropic alignment with formation of hexagonal germs was observed by polarizing optical microscopy. The photophysical properties showed drastic changes at the mesophase-isotropic transition, which is supported by the gain of order observed by X-ray diffraction. The electrical properties were investigated by modeling the current-voltage characteristics by a space-charge-limited current transport with a field dependent mobility.


Journal of Physical Chemistry B | 2009

A Multitechnique Study of Structure and Dynamics of Polyfluorene Cast Films and the Influence on Their Photoluminescence

Gregório C. Faria; Tomás S. Plivelic; Rafael F. Cossiello; Andre Souza; Tereza D. Z. Atvars; Iris L. Torriani; Eduardo Ribeiro deAzevedo

This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly[(9,9-dioctyl-2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These structures were determined by wide-angle X-ray scattering (WAXS) measurements. Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of approximately 4.5 A and laterally spaced by about approximately 16 A, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in the aggregated structures. Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, our data explain many features of the temperature dependence of the photoluminescence of these two polymers.


ACS Applied Materials & Interfaces | 2015

Thermal Evaporation versus Spin-Coating: Electrical Performance in Columnar Liquid Crystal OLEDs

Juliana Eccher; Wojciech Zajaczkowski; Gregório C. Faria; Harald Bock; Heinz von Seggern; Wojciech Pisula; Ivan H. Bechtold

The electrical responses of a columnar liquid crystal (a diimidodiester derivative of benzo[ghi]perylene) deposited either by spin-coating or by thermal evaporation into a typical OLED device are compared. For the spin-coated film, homeotropic alignment was induced by thermal annealing, which enhanced the charge carrier mobility significantly. For the evaporated films, homeotropic alignment could not be obtained by annealing. However, a degree of rectification higher than 3 orders of magnitude was achieved, even without annealing, with an electrical response similar to the response of the aligned spin-coated film. A trap-limited space-charge-limited current model was used to extract the charge carrier mobility directly from the current-voltage curves. Grazing incidence wide-angle X-ray scattering confirmed the homeotropic alignment of the annealed spin-coated film, whereas the columns are mostly oriented parallel to the surface in the evaporated case. In a field-effect transistor with bottom-gate bottom-contact geometry, the evaporated film exhibited a typical behavior of an n-type transistor. The degree of intermolecular order is thereby strongly dependent on the deposition method where vacuum deposition leads to a higher order. This higher order, however, impedes reorientation by annealing of the evaporated film but leads to improved charge transport between the electrodes even without homeotropic alignment of columnar liquid crystal.


Journal of Physical Chemistry B | 2012

New Columnar Zn-Phthalocyanine Designed for Electronic Applications

Ivan H. Bechtold; Juliana Eccher; Gregório C. Faria; Hugo Gallardo; Fernando Molin; Nicholas R. S. Gobo; Kleber T. de Oliveira; Heinz von Seggern

Columnar liquid crystals are composed of disk-shaped aromatic molecules surrounded by flexible side chains, where molecules self-assemble in columns and thereby form large surface-oriented domains. These systems are known for their good charge and exciton transport along the columns, with mobilities approaching those of aromatic single crystals. Such semiconducting materials are promising for devices applications, since the output efficiency can be tuned by properly aligning columns. In the work presented here, the synthesis and characterization of a new Zn-phthalocyanine (ZnPc) is described which exhibits remarkable properties, such as hexagonal columnar order, achieved by cooling down from the isotropic phase to room temperature. Such order was confirmed by optical microscopy and X-ray diffraction experiments. Diodes were constructed using spin-coated films, and the conductive properties were investigated by current versus voltage analysis, where mobilities of 10(-3) and 10(-2) cm(2)/(V s) were obtained for the nonannealed and annealed films, respectively.


Journal of Physical Chemistry A | 2012

Correlation between molecular conformation, packing, and dynamics in oligofluorenes: a theoretical/experimental study.

Oigres D. Bernardinelli; Gregório C. Faria; L. A. O. Nunes; Roberto Mendonca Faria; Eduardo Ribeiro deAzevedo; Melissa Fabiola Siqueira Pinto

Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange-correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and (13)C NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and (13)C NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid-state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.


Journal of the American Chemical Society | 2015

Correction to "a new tetracyclic lactam building block for thick, broad-bandgap photovoltaics".

Renee Kroon; Amaia Diaz de Zerio Mendaza; Scott Himmelberger; Jonas Bergqvist; Olof Bäcke; Gregório C. Faria; Feng Gao; Abdulmalik Obaid; Wenliu Zhuang; Desta Antenehe Gedefaw; Eva Olsson; Olle Inganäs; Alberto Salleo; Christian Müller; Mats R. Andersson

Page 11579. Further analysis of the spectroscopic data of the NT monomer suggested that the majority product is the Oalkylated instead of N-alkylated product. The amide functionality displays ambident reactivity, and the ratio of Nor Oalkylation is governed by factors such as the employed halide on the alkyl reactant and the thermodynamic stability of the final product. For amide-containing structures employed in conjugated polymers, the N-alkylated product is usually the majority product. However, recently He et al. reported a new conjugated building block that favored O-alkylation over Nalkylation under reaction conditions similar to those we employed. To unambiguously determine which isomer was formed, we synthesized a crystalline C8-NT unit under conditions similar to those used for the initial 2-hexyldecyl-substituted NT unit. Analysis by single-crystal X-ray diffraction and comparison of the other spectroscopic data confirmed that the majority product after alkylation is O-alkylated. The correct structures of the NT unit and PTNT are depicted in Figure 1.


IEEE Transactions on Dielectrics and Electrical Insulation | 2012

Influence of molecular dynamics on the dielectric properties of poly(9,9-di-n-octylfluorene-altbenzothiadiazole) -based devices

Gregório C. Faria; Heinz von Seggern; R.M. Faria; Eduardo R. deAzevedo

This paper uses Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC) techniques to study the molecular relaxations and phase transitions in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT), which has been extensively studied as the active thin film in organic devices. Besides the identification of the glass transition, β relaxation and crystal-to-crystal phase transition, we correlate such phenomena with dielectric and transport mechanisms in diodes with F8BT as the active layer. The β relaxation has been assigned to a transition at about 210 K measured by 1H and 13C solid state NMR, and can be attributed to local motions in the side chains. The glass transition has been detected by DSC and 1H NMR. Dielectric spectroscopy (DS) carried out at low frequencies on diodes made from F8BT show two peaks which are coincident with the above transitions. This allowed us to correlate the electrical changes in the film with the onset of specific molecular motions. In addition, DS indicates a third peak related with a crystal-to-crystal phase transition. Finally, these transitions were correlated with changes in the carrier mobility recorded in thin films and published recently.

Collaboration


Dive into the Gregório C. Faria's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinz von Seggern

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leni Akcelrud

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

R.M. Faria

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge