Gregorio D. Chazenbalk
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregorio D. Chazenbalk.
Nature Reviews Endocrinology | 2011
Mark O. Goodarzi; Daniel A. Dumesic; Gregorio D. Chazenbalk; Ricardo Azziz
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of reproductive age, with a prevalence of up to 10%. Various diagnostic criteria have been proposed, generally centered around the features of hyperandrogenism and/or hyperandrogenemia, oligo-ovulation and polycystic ovarian morphology. Insulin resistance is present in a majority of cases, with compensatory hyperinsulinemia contributing to hyperandrogenism via stimulation of ovarian androgen secretion and inhibition of hepatic sex hormone-binding globulin production. Adipose tissue dysfunction has been implicated as a contributor to the insulin resistance observed in PCOS. Environmental and genetic factors also have a role in the development of PCOS. The syndrome is associated with numerous morbidities, including infertility, obstetrical complications, type 2 diabetes mellitus, cardiovascular disease, and mood and eating disorders. Despite these morbidities, PCOS may be common in our society owing to evolutionary advantages of the syndrome in ancient times, including smaller family sizes, reduced exposure to childbirth-related mortality, increased muscle mass and greater capacity to store energy. The diagnosis of PCOS hinges on establishing key features while ruling out other hyperandrogenic or oligo-ovulatory disorders. Treatment is focused on the goals of ameliorating hyperandrogenic symptoms, inducing ovulation and preventing cardiometabolic complications.
Journal of Clinical Investigation | 1991
Yuji Nagayama; H L Wadsworth; D Russo; Gregorio D. Chazenbalk; Basil Rapoport
We examined the relative effects of thyrotropin (TSH) and TSH receptor autoantibodies in the sera of patients with autoimmune thyroid disease on three TSH-lutropin/chorionic gonadotropin (LH/CG) receptor extracellular domain chimeras. Each chimera binds TSH with high affinity. Only the chimera with TSH receptor extracellular domains ABC (amino acids 1-260) had a functional (cAMP) response to thyroid stimulatory IgG. The chimeras with TSH receptor domains CD (amino acids 171-360) and DE (amino acids 261-418) were unresponsive. The lack of response of the chimera with TSH receptor domains DE was anticipated because it fails to transduce a signal with TSH stimulation, unlike the other two chimeras. A different spectrum of responses occurred when the TSH-LH/CG chimeras were examined in terms of autoantibody competition for TSH binding. IgG with TSH binding-inhibitory activity when tested with the wild-type TSH receptor also inhibited TSH binding to the chimera with TSH receptor domains DE. Dramatically, however, these IgG did not inhibit TSH binding to the chimera with TSH receptor domains CD, and had weak or absent activity with the chimera with TSH receptor domains ABC. Chimeras with TSH receptor domains ABC and DE were equally effective in affinity-purifying IgG with thyroid-stimulatory and TSH binding-inhibitory activities. Nonstimulatory IgG with TSH binding-inhibitory activity inhibited the action of stimulatory IgG on the wild-type TSH receptor, but not with the chimera containing TSH receptor domains ABC. In summary, TSH receptor autoantibodies and TSH bind to regions in both domains ABC and DE of the TSH receptor extracellular region. Stimulatory and inhibitory TSH receptor autoantibodies, as well as TSH, appear to bind to different sites in domains ABC, but similar sites in domains DE, of the receptor. Alternatively, TSH and the different TSH receptor antibodies bind with differing affinities to the same site in the ABC region.
Journal of Clinical Investigation | 1993
Gregorio D. Chazenbalk; S Portolano; D Russo; J S Hutchison; Basil Rapoport; Sandra M. McLachlan
The most common organ-specific autoimmune disease in humans involves the thyroid. Autoantibodies against thyroid peroxidase (TPO) are present in the sera of virtually all patients with active disease. We report the molecular cloning of the genes for 30 high-affinity, IgG-class human autoantibodies to TPO from thyroid-infiltrating B cells. Analysis of the putative germline genes used for the TPO human autoantibodies suggests the use of only five different H and L chain combinations involving four H chains and three L chains. In addition, the same combination of H and L chains was found in multiple patients. The F(ab) proteins expressed by these genes define two major, closely associated domains (A and B) in an immunodominant region on TPO. These A and B domains contain the binding sites of approximately 80% of IgG-class TPO autoantibodies in the sera of patients with autoimmune thyroid disease. The present information permits analysis, not previously possible, of the relationship between autoantibody H and L chain genes and the antigenic domains on an autoantigen. Our data, obtained using target organ-derived autoantibodies, indicate that there is restriction in H and L chain usage in relation to the interaction with specific antigenic domains in human, organ-specific autoimmune disease.
Journal of Clinical Investigation | 2002
Gregorio D. Chazenbalk; Pavel Pichurin; Chun-Rong Chen; Francesco Latrofa; Alan P. Johnstone; Sandra M. McLachlan; Basil Rapoport
Graves disease is directly caused by thyroid-stimulating autoantibodies (TSAbs) that activate the thyrotropin receptor (TSHR). We observed upon flow cytometry using intact cells that a mouse mAb (3BD10) recognized the TSHR ectodomain with a glycosidylphosphatidylinositol (ECD-GPI) anchor approximately tenfold better than the same ectodomain on the wild-type TSHR, despite the far higher level of expression of the latter. The 3BD10 epitope contains the N-terminal cysteine cluster critical for TSAb action. Consequently, we hypothesized and confirmed that TSAb (but not thyrotropin-blocking autoantibodies [TBAbs]) also poorly recognize the wild-type TSHR relative to the ECD-GPI. Despite poor recognition by TSAb of the holoreceptor, soluble TSHR A subunits (known to be shed from surface TSHR) fully neutralized autoantibody-binding activity. These data indicate that the epitope(s) for TSAbs, but not for TBAbs, are partially sterically hindered on the holoreceptor by the plasma membrane, the serpentine region of the TSHR, or by TSHR dimerization. However, the TSAb epitope on the soluble A subunit is freely accessible. This observation, as well as other evidence, supports the concept that A subunit shedding either initiates or amplifies the autoimmune response to the TSHR, thereby causing Graves disease in genetically susceptible individuals.
Journal of Biological Chemistry | 1997
Gregorio D. Chazenbalk; Juan Carlos Jaume; Sandra M. McLachlan; Basil Rapoport
Previous attempts to generate autoantibody-reactive, secreted thyrotropin receptor (TSHR) ectodomain in mammalian cells have failed because of retention within the cell of material with immature carbohydrate. We have overcome this difficulty by performing progressive carboxyl-terminal truncations of the human TSHR ectodomain (418 amino acid residues including signal peptide). Three ectodomain variants (TSHR-261, TSHR-289, and TSHR-309) were truncated at residues 261, 289, and 309, respectively. Unlike the full ectodomain, ectodomain variants were secreted with an efficiency inversely proportional to their size. Secreted ectodomain variants contained ∼20 kDa of complex carbohydrate. TSHR-261 was chosen for further study because it was secreted very efficiently and neutralized autoantibodies in Graves’ patients’ sera. This ectodomain variant was partially purified using sequential lectin and nickel-chelate chromatography, permitting the first direct visualization and quantitation of the mammalian TSHR. Most important, very small (nanogram) quantities of this material neutralized 70–100% of TSHR autoantibody activity in all 18 Graves’ sera studied. In summary, carboxyl-terminal truncation of the human TSHR ectodomain generates a secreted protein with complex carbohydrate that neutralizes autoantibodies in Graves’ patients’ sera. Antigenically active TSHR will be valuable for future studies on the diagnosis, pathogenesis, and immunotherapy of Graves’ disease.
Diabetes | 2013
Yen Hao Chen; Saleh Heneidi; Jung Min Lee; Lawrence C. Layman; David W. Stepp; Gloria Mabel Gamboa; Bo Shiun Chen; Gregorio D. Chazenbalk; Ricardo Azziz
Approximately 70% of women with polycystic ovary syndrome (PCOS) have intrinsic insulin resistance (IR) above and beyond that associated with body mass, including dysfunctional glucose metabolism in adipose tissue (AT). In AT, analysis of the IRS/PI3-K/AKT pathway signaling components identified only GLUT4 expression to be significantly lower in PCOS patients and in control subjects with IR. We examined the role of miRNAs, particularly in the regulation of GLUT4, the insulin-sensitive glucose transporter, in the AT of PCOS and matched control subjects. PCOS AT was determined to have a differentially expressed miRNA profile, including upregulated miR-93, -133, and -223. GLUT4 is a highly predicted target for miR-93, while miR-133 and miR-223 have been demonstrated to regulate GLUT4 expression in cardiomyocytes. Expression of miR-93 revealed a strong correlation between the homeostasis model assessment of IR in vivo values and GLUT4 and miR-93 but not miR-133 and -223 expression in human AT. Overexpression of miR-93 resulted in downregulation of GLUT4 gene expression in adipocytes through direct targeting of the GLUT4 3′UTR, while inhibition of miR-93 activity led to increased GLUT4 expression. These results point to a novel mechanism for regulating insulin-stimulated glucose uptake via miR-93 and demonstrate upregulated miR-93 expression in all PCOS, and in non-PCOS women with IR, possibly accounting for the IR of the syndrome. In contrast, miR-133 and miR-223 may have a different, although yet to be defined, role in the IR of PCOS.
Journal of Clinical Investigation | 1989
Keith D. Kaufman; Basil Rapoport; Pui Seto; Gregorio D. Chazenbalk; Ronald P. Magnusson
A full-length cDNA clone for human thyroid peroxidase (TPO) inserted into the mammalian cell expression vector pECE was stably transfected into Chinese hamster ovary (CHO) cells. Clones were assayed for human TPO mRNA, TPO protein, and TPO enzymatic activity. One subclone, expressing the highest TPO enzymatic activity, was used in further studies. FACS analysis of these cells preincubated in Hashimotos serum revealed approximately 100-fold greater fluorescence compared with controls, indicating that recombinant TPO is expressed on the cell surface. Particulate antigen was extracted from these cells and studied by Western blot analysis using a panel of Hashimotos sera of known antimicrosomal antibody (anti-MSA) titer. Under nonreducing conditions a broad, immunoreactive band of approximately 200 kD was observed, as well as a doublet of approximately 110 kD. All of the 36 Hashimotos sera tested reacted with these bands, most in proportion to their anti-MSA titer. Six normal sera tested against this antigen(s) were nonreactive, as were the Hashimotos sera tested against nontransfected CHO cells. Western blots under reducing conditions revealed a considerably diminished signal, with some of the sera of lower anti-MSA titer becoming negative, the loss of the 200-kD broad band, and the apparent conversion of the 110-kD doublet into a single band. Preincubation of cells in tunicamycin revealed no decrease in TPO immunoreactivity. In conclusion, we expressed enzymatically active human TPO in nonthyroidal eukaryotic cells. Our data prove that functionally active TPO is a major component of the thyroid microsomal antigen.
Biochemical and Biophysical Research Communications | 1990
Yuji Nagayama; Diego Russo; Gregorio D. Chazenbalk; Harry L. Wadsworth; Basil Rapoport
We constructed a series of TSH-LH/CG receptor chimeras by homologous substitution of relatively small regions of the TSH receptor extracellular domain for the corresponding region of the extracellular domain of the LH/CG receptor. Constructs were stably expressed in Chinese hamster ovary cells. Of the five chimeric receptors, only TSH-LHR-14, which contains mid-region domain C (amino acid residues 171-260) of the extracellular component of the TSH receptor, exhibited TSH binding of relatively high affinity. Consistent with this TSH binding, chimera TSH-LHR-14 was the only one that demonstrated a functional response to TSH stimulation in terms of intracellular cAMP generation. These data indicate that domain C plays a vital role in TSH receptor function.
PLOS ONE | 2013
Saleh Heneidi; Ariel A. Simerman; Erica Keller; Prapti Singh; Xinmin Li; Daniel A. Dumesic; Gregorio D. Chazenbalk
Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse) Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal). When compared to adipose stem cells (ASCs), microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell homing. Being highly resistant to severe cellular stress, Muse-AT cells have the potential to make a critical impact on the field of regenerative medicine and cell-based therapy.
Steroids | 2013
Gregorio D. Chazenbalk; Prapti Singh; Dana Irge; Amy Shah; David H. Abbott; Daniel A. Dumesic
Androgens play a pivotal role in the regulation of body fat distribution. Adipogenesis is a process whereby multipotent adipose stem cells (ASCs) initially become preadipocytes (ASC commitment to preadipocytes) before differentiating into adipocytes. Androgens inhibit human (h) subcutaneous (SC) abdominal preadipocyte differentiation in both sexes, but their effects on hASC commitment to preadipocyte formation is unknown. We therefore examined whether androgen exposure to human (h) ASCs, isolated from SC abdominal adipose of nonobese women, impairs their commitment to preadipocyte formation and/or subsequent differentiation into adipocytes. For this, isolated hASCs from SC abdominal lipoaspirate were cultured in adipogenesis-inducing medium for 0.5-14days in the presence of testosterone (T, 0-100nM) or dihydrotestosterone (DHT, 0-50nM). Adipogenesis was determined by immunofluorescence microscopy and by quantification of adipogenically relevant transcriptional factors, PPARγ, C/EBPα and C/EBPβ. We found that a 3-day exposure of hASCs to T (50nM) or DHT (5nM) in adipogenesis-inducing medium impaired lipid acquisition and decreased PPARγ, C/EBPα and C/EBPβ gene expression. The inhibitory effects of T and DHT at this early-stage of adipocyte differentiation, were partially and completely reversed by flutamide (F, 100nM), respectively. The effect of androgens on hASC commitment to a preadipocyte phenotype was examined via activation of Bone Morphogenic Protein 4 (BMP4) signaling. T (50nM) and DHT (5nM) significantly inhibited the stimulatory effect of BMP4-induced ASC commitment to the preadipocyte phenotype, as regards PPARγ and C/EBPα gene expression. Our findings indicate that androgens, in part through androgen receptor action, impair BMP4-induced commitment of SC hASCs to preadipocytes and also reduce early-stage adipocyte differentiation, perhaps limiting adipocyte numbers and fat storage in SC abdominal adipose.