Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregorio Hueros is active.

Publication


Featured researches published by Gregorio Hueros.


Plant Science | 2001

Development and functions of seed transfer cells

Richard Thompson; Gregorio Hueros; Heinz-Albert Becker; Monika Maitz

In secretion or absorption processes, solutes are transported across the plasmalemma between the symplastic and apoplastic compartments. For this purpose, certain plant cells have developed a specialised transfer cell morphology characterised by wall ingrowths, which amplify the associated plasmalemma surface area up to 20-fold. Detailed studies on the function and development of transfer cells in the context of seed filling have been carried out mainly in cereal endosperm, and for the cotyledon and seed coat cells of legumes. The major solutes transferred are amino acids, sucrose and monosaccharides. The contributions of recently identified symporter proteins to solute transfer are reviewed here, as is the role of apoplastic invertases in promoting solute assimilation. Expression of invertase and monosaccharide transporters early in both cereal and legume seed development orchestrates the distribution of free sugars which play an important role in regulating transfer cell function and determining final endosperm or embryo cell number. Transfer cell differentiation is subject to developmental control, and may also be modulated by sugar levels. The most abundant genes specifically expressed in the transfer layer of maize endosperm encode small antipathogenic proteins, pointing to a role for these cells in protecting the developing endosperm against pathogen ingress. The functional characterisation of the corresponding transfer layer-specific promoters has provided a tool for dissecting transfer cell functions. Transfer cells are highly polar in their organisation, the characteristic cell wall ingrowths developing on one face only. The presence of cytoskeletal components bordering wall ingrowths is documented, but their role in establishing transfer cell morphology remains to be established.


Theoretical and Applied Genetics | 1996

A molecular linkage map of rye

Y. Loarce; Gregorio Hueros; E. Ferrer

A genetic map of six chromosomes of rye, (all of the rye chromosomes except for 2R), was constructed using 77 RFLP and 12 RAPD markers. The map was developed using an F2 population of 54 plants from a cross between two inbred lines. A rye genomic library was constructed as a source of clones for RFLP mapping. Comparisons were made between the rye map and other rye and wheat maps by including additional probes previously mapped in those species. These comparisons allowed (1) chromosome arm orientation to the linkage groups to be given, (2) the corroboration of several evolutionary translocations between rye chromosomes and homoeologous chromosomes of wheat; (3) an increase in the number of available markers for target regions of rye that show colinearity with wheat. Inconsistencies in the location of markers between the wheat and rye maps were mostly detected by multi-copy probes.


Plant Molecular Biology | 1999

Evidence for factors regulating transfer cell-specific expression in maize endosperm.

Gregorio Hueros; Joaquín Royo; Monika Maitz; Francesco Salamini; Richard Thompson

In maize, a layer of basal endosperm cells adjacent to the pedicel is modified for a function in solute transfer. Three genes specifically expressed in this region, termed the basal endosperm transfer layer (BETL-2 to -4), were isolated by differential hybridization. BETL-2 to -4 are coordinately expressed in early and mid-term endosperm development, but are absent at later stages. BETL-2 to -4 coding sequences all predict small (<100 amino acids), secreted, cysteine-rich polypeptides which lack close relatives in current database accessions. BETL-3 and BETL-1 display some sequence similarities with each other and to plant defensins. BETL-2 to -4 promoter regions were isolated and compared, revealing the presence of a promoter-proximal microsatellite repeat as the most highly conserved sequence element in each sequence. Electrophoretic mobility shift assays (EMSA) showed that specific BETL-2 to -4 promoter fragments competed for binding to the same DNA-binding activity in nuclear extracts prepared from maize endosperm. Although BETL-2 to -4 are only expressed in basal endosperm cells, the DNA-binding activities detected were of two types: distal endosperm-specific, or present in both basal and distal endosperm extracts. On the basis of these findings, a model to account for the coordinate regulation of BETL genes in endosperm cells is proposed.


The Plant Cell | 2009

The Maize Transcription Factor Myb-Related Protein-1 Is a Key Regulator of the Differentiation of Transfer Cells

Elisa Gómez; Joaquín Royo; Luis M. Muñiz; Olivier Sellam; Wyatt Paul; Denise Gerentes; Cristina Barrero; Maribel López; Pascual Perez; Gregorio Hueros

Transfer cells are highly modified plant cells specialized in the transport of solutes. They differentiate at many plant exchange surfaces, including phloem loading and unloading zones such as those present in the sink organs and seeds. In maize (Zea mays) seeds, transfer cells are located at the base of the endosperm. It is currently unknown how apical-basal polarity is established or why the peripheral cells at the base of the endosperm differentiate into transfer instead of aleurone cells. Here, we show that in epidermal cells committed to develop into aleurone cells, the ectopic expression of the transfer cell-specific transcriptional activator Myb-Related Protein-1 (MRP-1) is sufficient to temporarily transform them into transfer cells. These transformed cells acquire distinct transfer cell features, such as cell wall ingrowths and an elongated shape. In addition, they express a number of MRP-1 target genes presumably involved in defense. We also show that the expression of MRP-1 is needed to maintain the transfer cell phenotype. Later in development, an observed reduction in the ectopic expression of MRP-1 was followed by the reversion of the transformed cells, which then acquire aleurone cell features.


Plant Molecular Biology | 2005

A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterisation of ZmESR-6, a defensin gene specifically expressed in this region

Maite Balandín; Joaquín Royo; Elisa Gómez; Luis M. Muñiz; Antonio Molina; Gregorio Hueros

A Zea mays cDNA clone, ZmESR-6, was isolated as a gene specifically expressed at the basal region of immature kernels. ZmESR-6 cDNA encoded for a small (11.1 kDa) protein homologous to plant defensins. As for other defensins, the protein contained an N-terminal signal peptide signature and a C-terminal acidic peptide, the mature peptide has a molecular mass of 5.5 kDa. ZmESR-6 was highly expressed in developing kernels but the transcript could not be detected in any other maize tissue. The recombinant ZmESR-6 protein, purified from E. coli, showed strong in vitro inhibitory activity against bacterial and fungal plant pathogens, suggesting a role for ZmESR-6 in plant defence. The distribution of the transcripts was restricted to the embryo surrounding region (ESR) of the kernel. Immunolocalisation experiments revealed, however, that at the grain filling phase ZmESR-6 was accumulated in the placentochalaza-cells, rather than in the ESR cells that produce it. Our results suggest that the ESR has a role in protecting the embryo at the very early stages of seed development, whilst contributes to the general defence mechanism of the kernel at later developmental stages.


Planta | 2009

The promoter of ZmMRP-1, a maize transfer cell-specific transcriptional activator, is induced at solute exchange surfaces and responds to transport demands.

Cristina Barrero; Joaquín Royo; Carmen Grijota-Martinez; Christian Faye; Wyatt Paul; Soledad Sanz; H.-H. Steinbiss; Gregorio Hueros

Transfer cells have specializations that facilitate the transport of solutes across plant exchange surfaces. ZmMRP-1 is a maize (Zea mays) endosperm transfer cell-specific transcriptional activator that plays a central role in the regulatory pathways controlling transfer cell differentiation and function. The present work investigates the signals controlling the expression of ZmMRP-1 through the production of transgenic lines of maize, Arabidopsis, tobacco and barley containing ZmMRP-1promoter:GUS reporter constructs. The GUS signal predominantly appeared in regions of active transport between source and sink tissues, including nematode-induced feeding structures and at sites of vascular connection between developing organs and the main plant vasculature. In those cases, promoter induction was associated with the initial developmental stages of transport structures. Significantly, transfer cells also differentiated in these regions suggesting that, independent of species, location or morphological features, transfer cells might differentiate in a similar way under the influence of conserved induction signals. In planta and yeast experiments showed that the promoter activity is modulated by carbohydrates, glucose being the most effective inducer.


Journal of Biological Chemistry | 2000

A Maize Homologue of the Bacterial CMP-3-Deoxy-d-manno-2-octulosonate (KDO) Synthetases SIMILAR PATHWAYS OPERATE IN PLANTS AND BACTERIA FOR THE ACTIVATION OF KDO PRIOR TO ITS INCORPORATION INTO OUTER CELLULAR ENVELOPES

Joaquín Royo; Elisa Gómez; Gregorio Hueros

The eight-carbon acid sugar 3-deoxy-d-manno-2-octulosonate (KDO) is an essential component of Gram-negative bacterial cell walls and capsular polysaccharides. KDO is incorporated into these polymers as CMP-KDO, which is produced in an unusual activation step catalyzed by the enzyme CMP-KDO synthetase. CMP-KDO synthetase activity has traditionally been considered exclusive to Gram-negative bacteria. CMP-KDO synthetase inhibitors attract great interest owing to their potential as selective bactericides. The sugar KDO is also a component of the rhamnogalacturonan II pectin fraction of the primary cell walls of most higher plants and of the cell wall polysaccharides of some green algae. However, the metabolic pathway leading to its incorporation into the plant cell wall is unknown. This paper describes the isolation and characterization of a maize gene, which codes for a protein very similar in sequence and activity to prokaryotic CMP-KDO synthetases. Remarkably, the maize gene can complement a CMP-KDO synthetase (kdsB) Salmonella typhimurium mutant defective in cell wall synthesis. ZmCKS activity is novel in eukaryotes. The evolutionary origin of ZmCKS is discussed in relation to the high degree of conservation between the plant and bacterial genes and its atypical codon usage in maize.


Theoretical and Applied Genetics | 1992

Organization of repeated sequences in species of the genus Avena

Roberto Solano; Gregorio Hueros; A. Fominaya; E. Ferrer

SummaryFour repetitive sequences from Avena murphyi have been isolated and their genome organization studied in different species of the genus Avena. A tandem sequence array was found for the Avena species that contain the C genome. Three other dispersed sequences present in the A and C genomes were arranged in a genomespecific manner. The fact that no major differences in the hybridization patterns were found between species with the same basic genome is consistent with the current taxonomy of Avena species.


The Plant Cell | 2011

Maize Rough Endosperm3 Encodes an RNA Splicing Factor Required for Endosperm Cell Differentiation and Has a Nonautonomous Effect on Embryo Development

Romain Fouquet; Federico Martin; Diego S. Fajardo; Christine M. Gault; Elisa Gómez; Chi-Wah Tseung; Tyler Policht; Gregorio Hueros; A. Mark Settles

We used maize translocations to identify rough endosperm3 (rgh3) as a locus required in the endosperm to promote embryo development. The rgh3 mutant impairs or delays endosperm cell differentiation and encodes a hypomorphic allele of URP, a core RNA splicing factor. A subset of alternatively spliced transcripts shows differences in splicing patterns in wild-type and rgh3 tissues. Endosperm and embryo development are coordinated via epigenetic regulation and signaling between these tissues. In maize (Zea mays), the endosperm–embryo signals are not known, but endosperm cellularization is a key event for embryos to form shoots and roots. We screened seed mutants for nonautonomous functions in endosperm and embryo development with genetically nonconcordant seeds and identified the recessive mutant rough endosperm3 (rgh3). The wild-type Rgh3 allele is required in the endosperm for embryos to develop and has an autonomous role in embryo and seedling development. Endosperm cell differentiation is defective in rgh3. Results from endosperm cell culture indicate that rgh3 mutants remain in a proliferative state through mid-seed development. Rgh3 encodes the maize U2AF35 Related Protein (URP), an RNA splicing factor involved in both U2 and U12 splicing. The Rgh3 allele produces at least 19 alternative splice variants with only one isoform encoding a full-length ortholog to URP. The full-length RGH3α isoform localizes to the nucleolus and displays a speckled pattern within the nucleoplasm, and RGH3α colocalizes with U2AF65. A survey of alternatively spliced transcripts found that, in the rgh3 mutant, a fraction of noncanonical splicing events are altered. Our findings suggest that differentiation of maize endosperm cell types is necessary for embryos to develop. The molecular cloning of Rgh3 suggests that alternative RNA splicing is needed for cell differentiation, development, and plant viability.


Plant Molecular Biology | 1993

A structural and evolutionary analysis of a dispersed repetitive sequence

Gregorio Hueros; Y. Loarce; E. Ferrer

A family of dispersed repetitive sequences (Hch1) which is present in the genome of the wild barley Hordeum chilense was studied in detail. Hch1 sequences are found both as part of short tandem arrays and dispersed throughout the H. chilense chromosomes. Subcloning of sections of the sequence reveals that it is composed of unrelated classes of sequences which can also be found separately in other genomic locations. Analysis of these sequences in the genomes of wheat and two other wild barley species strongly suggests that specific amplifications and arrangements of the repeated sequences have taken place during speciation. Nucleotide sequence analysis fails to detect, in their entirity, the features shown by plant transposons.

Collaboration


Dive into the Gregorio Hueros's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Ferrer

University of Alcalá

View shared research outputs
Top Co-Authors

Avatar

Wyatt Paul

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Y. Loarce

University of Alcalá

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge