Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Y. Loarce is active.

Publication


Featured researches published by Y. Loarce.


Theoretical and Applied Genetics | 1996

A molecular linkage map of rye

Y. Loarce; Gregorio Hueros; E. Ferrer

A genetic map of six chromosomes of rye, (all of the rye chromosomes except for 2R), was constructed using 77 RFLP and 12 RAPD markers. The map was developed using an F2 population of 54 plants from a cross between two inbred lines. A rye genomic library was constructed as a source of clones for RFLP mapping. Comparisons were made between the rye map and other rye and wheat maps by including additional probes previously mapped in those species. These comparisons allowed (1) chromosome arm orientation to the linkage groups to be given, (2) the corroboration of several evolutionary translocations between rye chromosomes and homoeologous chromosomes of wheat; (3) an increase in the number of available markers for target regions of rye that show colinearity with wheat. Inconsistencies in the location of markers between the wheat and rye maps were mostly detected by multi-copy probes.


Theoretical and Applied Genetics | 1999

Molecular characterization and genetic mapping of random amplified microsatellite polymorphism in barley

J. A. Dávila; Y. Loarce; E. Ferrer

Abstract This study has analyzed the molecular basis and genetic behaviour of the polymorphism generated by the amplification of barley genomic DNA with primers complementary to microsatellites. Primers anchored at the 5′ end, used alone or in combination with arbitrary sequence primers, generated random amplified microsatellite polymorphisms (RAMPs). Unanchored primers were also used as single primers in a microsatellite primed-PCR (MP-PCR). Twenty six randomly selected RAMP DNA fragments which showed polymorphism between the cultivars Steptoe and Morex were cloned and sequenced. All sequences showed the expected repeated motif at the end of the insert, with the number of repeats ranging from five to ten. Genomic sequences containing low numbers of microsatellite motifs were preferentially amplified; therefore, only a fraction of the polymorphism could be attributed to variation in the number of microsatellite motifs at the priming site. Some sequences contained either cryptic simple sequences or members of families of repeated DNA. Polymorphism at the internal cryptic simple sequences was detected by RAMP bands inherited as co-dominant markers. Four MP-PCR bands were cloned and sequenced. A number of repeats identical to the primer itself were found at each end of the insert. Two allelic bands were polymorphic for an internal microsatellite. The potential use of cloned bands as fingerprinting tools was investigated by employing them as hybridization probes in Southern blots containing digested barley DNA from a sample of cultivars. RAMP probes produced complex hybridization band patterns. MP-PCR probes produced either a highly variable single locus or low-copy number loci. Segregations for 31 RAMPs and three MP-PCR bands were studied in a population of 70 doubled-haploids from the Steptoe/Morex cross. One third of all markers were co-dominantly inherited. Markers were positioned on an RFLP map and found to be distributed in all barley chromosomes. The new markers enlarged the overall length of the map to 1408 cM.


Theoretical and Applied Genetics | 2001

Discrimination of the closely related A and B genomes in AABB tetraploid species of Avena

M. L. Irigoyen; Y. Loarce; Concha Linares; E. Ferrer; J. Michael Leggett; A. Fominaya

Abstract  Fluorescent in situ (FISH) and Southern hybridization procedures were used to investigate the chromosomal distribution and genomic organization of the satellite DNA sequence As120a (specific to the A-genome chromosomes of hexaploid oats) in two tetraploid species, Avena barbata and Avena vaviloviana. These species have AB genomes. In situ hybridization of pAs120a to tetraploid oat species revealed elements of this repeated family to be distributed over both arms of 14 of the 28 chromosomes of these species. Genomes A and B were subsequently distinguished, indicating an allopolyploid origin for A. barbata. This was confirmed by assigning the satellited chromosomes to individual genomes, using the satellite itself and two ribosomal probes in simultaneous and sequential in situ hybridization analyses. Differences between A. barbata and A. vaviloviana genomes were also revealed by both FISH and Southern techniques using pAs120a probes. Whereas two B-genome chromosome pairs were found to be involved in intergenomic translocations in A. vaviloviana, FISH detected no intergenomic rearrangements in A. barbata. When using pAs120a as a probe, Southern hybridization also revealed differences in the hybridization patterns of the two genomes. A 1300-bp EcoRV fragment was present in A. barbata but absent in A. vaviloviana. This fragment was also detected in Southern analyses of A-genome diploid and hexaploid oat species.


Theoretical and Applied Genetics | 2010

A new chromosome nomenclature system for oat (Avena sativa L. and A. byzantina C. Koch) based on FISH analysis of monosomic lines

M. J. Sanz; Eric N. Jellen; Y. Loarce; M. L. Irigoyen; E. Ferrer; A. Fominaya

Fluorescent in situ hybridization (FISH) with multiple probes was used to analyze mitotic and meiotic chromosome spreads of Avena sativa cv ‘Sun II’ monosomic lines, and of A. byzantina cv ‘Kanota’ monosomic lines from spontaneous haploids. The probes used were A. strigosa pAs120a (a repetitive sequence abundant in A-genome chromatin), A. murphyi pAm1 (a repetitive sequence abundant in C-genome chromatin), A. strigosa pITS (internal transcribed spacer of rDNA) and the wheat rDNA probes pTa71 (nucleolus organizer region or NOR) and pTa794 (5S). Simultaneous and sequential FISH employing pairs of these probes allowed the identification and genome assignation of all chromosomes. FISH mapping using mitotic and meiotic metaphases facilitated the genomic and chromosomal identification of the monosome in each line. Of the 17 ‘Sun II’ lines analyzed, 13 distinct monosomic lines were found, corresponding to four monosomes of the A-genome, five of the C-genome and four of the D-genome. In addition, 12 distinct monosomic lines were detected among the 20 ‘Kanota’ lines examined, corresponding to six monosomes of the A-genome, three of the C-genome and three of the D-genome. The results show that 19 chromosomes out of 21 of the complement are represented by monosomes between the two genetic backgrounds. The identity of the remaining chromosomes can be deduced either from one intergenomic translocation detected on both ‘Sun II’ and ‘Kanota’ lines, or from the single reciprocal, intergenomic translocation detected among the ‘Sun II’ lines. These results permit a new system to be proposed for numbering the 21 chromosome pairs of the hexaploid oat complement. Accordingly, the A-genome contains chromosomes 8A, 11A, 13A, 15A, 16A, 17A and 19A; the C-genome contains chromosomes 1C, 2C, 3C, 4C, 5C, 6C and 7C; and the D-genome consists of chromosomes 9D, 10D, 12D, 14D, 18D, 20D and 21D. Moreover, the FISH patterns of 16 chromosomes in ‘Sun II’ and 15 in ‘Kanota’ suggest that these chromosomes could be involved in intergenomic translocations. By comparing the identities of individually translocated chromosomes in the two hexaploid species with those of other hexaploids, we detected different types of intergenomic translocations.


Plant Molecular Biology | 1993

A structural and evolutionary analysis of a dispersed repetitive sequence

Gregorio Hueros; Y. Loarce; E. Ferrer

A family of dispersed repetitive sequences (Hch1) which is present in the genome of the wild barley Hordeum chilense was studied in detail. Hch1 sequences are found both as part of short tandem arrays and dispersed throughout the H. chilense chromosomes. Subcloning of sections of the sequence reveals that it is composed of unrelated classes of sequences which can also be found separately in other genomic locations. Analysis of these sequences in the genomes of wheat and two other wild barley species strongly suggests that specific amplifications and arrangements of the repeated sequences have taken place during speciation. Nucleotide sequence analysis fails to detect, in their entirity, the features shown by plant transposons.


Cytogenetic and Genome Research | 2005

Microdissection and microcloning of plant chromosomes

A. Fominaya; Concha Linares; Y. Loarce; E. Ferrer

Cytogenetic and molecular tools play an increasingly important role in plant genome research. A number of interesting applications that involve chromosome painting, the relationship between specific chromosomes and specific linkage groups, the relationships between physical and genetic distances on linkage maps, and the isolation of genes of interest, have been the subjects of recently published research. The aim of this paper is to review the different techniques available for chromosome microdissection and microcloning, and their use for the study of plant genomes. The quality of chromosomal DNA obtained is considered, and some recent results from our laboratory are presented.


Cytogenetic and Genome Research | 2012

Use of Tyramide-Fluorescence in situ Hybridization and Chromosome Microdissection for Ascertaining Homology Relationships and Chromosome Linkage Group Associations in Oats

M. J. Sanz; Y. Loarce; E. Ferrer; A. Fominaya

The physical mapping of single locus sequences by tyramide-fluorescence in situ hybridization (Tyr-FISH) and the analysis of sequences obtained from microdissected chromosomes were assayed as potential tools for (1) determining homology and homoeology among chromosome regions of Avena species, and (2) establishing associations between linkage groups and specific chromosomes. Low copy number probes, derived from resistance gene analogues (RGAs) and 2.8–4.5 kb long, successfully produced hybridization signals on specific chromosomes. Four sets of homoeologous chromosome regions were identified in the hexaploids using 3 probes that produced 4 single locus markers in A. strigosa and 2 in A. eriantha. Laser capture microdissection of metaphase I cells of A. sativa monosomic lines allowed the isolation of critical univalents. Sequences derived from 2 RGAs were successfully amplified in DNA extracted from univalents. In one instance, it was possible to map a nucleotide polymorphism specific for 1 chromosome. An association was established between this chromosome and its linkage groups in 2 hexaploid genetic maps. The results indicate that Tyr-FISH is useful in the characterization of homoeologous chromosome segments in hexaploids, whereas chromosome microdissection, as employed in this work, needs to be improved before it can routinely be used with meiotic chromosomes.


Frontiers in Plant Science | 2016

Identification of Genes in a Partially Resistant Genotype of Avena sativa Expressed in Response to Puccinia coronata Infection

Y. Loarce; Elisa Navas; Carlos Paniagua; A. Fominaya; José Luis Manjón; E. Ferrer

Cultivated oat (Avena sativa), an important crop in many countries, can suffer significant losses through infection by the fungus Puccinia coronata, the causal agent of crown rust disease. Understanding the molecular basis of existing partial resistance to this disease might provide targets of interest for crop improvement programs. A suppressive subtractive hybridization (SSH) library was constructed using cDNA from the partially resistant oat genotype MN841801-1 after inoculation with the pathogen. A total of 929 genes returned a BLASTx hit and were annotated under different GO terms, including 139 genes previously described as participants in mechanisms related to the defense response and signal transduction. Among these were genes involved in pathogen recognition, cell-wall modification, oxidative burst/ROS scavenging, and abscisic acid biosynthesis, as well genes related to inducible defense responses mediated by salicylic and jasmonic acid (although none of which had been previously reported involved in strong responses). These findings support the hypothesis that basal defense mechanisms are the main systems operating in oat partial resistance to P. coronata. When the expression profiles of 20 selected genes were examined at different times following inoculation with the pathogen, the partially resistant genotype was much quicker in mounting a response than a susceptible genotype. Additionally, a number of genes not previously described in oat transcriptomes were identified in this work, increasing our molecular knowledge of this crop.


Theoretical and Applied Genetics | 2002

Assignment of oat linkage groups to microdissected Avena strigosa chromosomes

Y. Loarce; E. Ferrer; G. Künzel; A. Fominaya

Abstract.Microdissection of metaphase chromosome preparations of diploid oat Avena strigosa (2n = 14) allowed isolation of the three individual chromosomes with distinct morphologies, numbers 2, 3 and 7. Using a PCR approach based on the DNA of microdissected chromosomes, STS derivatives of RFLP markers, genetically mapped in Avena spp. linkage maps, have been physically assigned to these three chromosomes. Based on either two or four RFLP-derived STS markers, the A. strigosa chromosomes 2 and 3 were found to be homoeologous to the oat linkage groups C and E, respectively. With the DNA of chromosome 7, four RFLP-derived STS markers located within the central part of linkage group F and two distal ends of linkage group G were amplified. Accordingly, chromosome 7 corresponds to linkage group F and, most probably, is involved in an A. strigosa-specific chromosomal translocation relative to the diploid species Avena atlantica and Avena hirtula, of which the cross progeny was used for linkage mapping of the tested RFLP clones.


Methods of Molecular Biology | 2016

Tyramide Signal Amplification: Fluorescence In Situ Hybridization for Identifying Homoeologous Chromosomes

A. Fominaya; Y. Loarce; J. M. González; E. Ferrer

Tyramide signal amplification (TSA) fluorescence in situ hybridization (FISH) has been shown as a valuable molecular tool for visualizing specific amplified DNA sequences in chromosome preparations. This chapter describes how to perform TSA-FISH, paying special interest to its two critical steps: probe generation and metaphase plate generation. The potential of physically mapping 12S-globulin sequences by TSA-FISH as a means of identifying homeology among chromosome regions of Avena species was tested and is discussed.

Collaboration


Dive into the Y. Loarce's collaboration.

Top Co-Authors

Avatar

E. Ferrer

University of Alcalá

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Altes

University of Alcalá

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge