Gregory D. Mayer
Texas Tech University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory D. Mayer.
Environmental Health Perspectives | 2015
Andrew D. McEachran; Brett R. Blackwell; J. Delton Hanson; Kimberly J. Wooten; Gregory D. Mayer; Stephen B. Cox; Philip N. Smith
Background: Emergence and spread of antibiotic resistance has become a global health threat and is often linked with overuse and misuse of clinical and veterinary chemotherapeutic agents. Modern industrial-scale animal feeding operations rely extensively on veterinary pharmaceuticals, including antibiotics, to augment animal growth. Following excretion, antibiotics are transported through the environment via runoff, leaching, and land application of manure; however, airborne transport from feed yards has not been characterized. Objectives: The goal of this study was to determine the extent to which antibiotics, antibiotic resistance genes (ARG), and ruminant-associated microbes are aerially dispersed via particulate matter (PM) derived from large-scale beef cattle feed yards. Methods: PM was collected downwind and upwind of 10 beef cattle feed yards. After extraction from PM, five veterinary antibiotics were quantified via high-performance liquid chromatography with tandem mass spectrometry, ARG were quantified via targeted quantitative polymerase chain reaction, and microbial community diversity was analyzed via 16S rRNA amplification and sequencing. Results: Airborne PM derived from feed yards facilitated dispersal of several veterinary antibiotics, as well as microbial communities containing ARG. Concentrations of several antibiotics in airborne PM immediately downwind of feed yards ranged from 0.5 to 4.6 μg/g of PM. Microbial communities of PM collected downwind of feed yards were enriched with ruminant-associated taxa and were distinct when compared to upwind PM assemblages. Furthermore, genes encoding resistance to tetracycline antibiotics were significantly more abundant in PM collected downwind of feed yards as compared to upwind. Conclusions: Wind-dispersed PM from feed yards harbors antibiotics, bacteria, and ARGs. Citation: McEachran AD, Blackwell BR, Hanson JD, Wooten KJ, Mayer GD, Cox SB, Smith PN. 2015. Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environ Health Perspect 123:337–343; http://dx.doi.org/10.1289/ehp.1408555
Toxicology and Applied Pharmacology | 2013
Song Tang; Qingsong Cai; Hicham Chibli; Vinay Allagadda; Jay L. Nadeau; Gregory D. Mayer
Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24h of CdSO4 or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO4 but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms.
Aquatic Toxicology | 2009
Emily G. Notch; Gregory D. Mayer
Nucleotide excision repair (NER) is the primary mechanism that removes bulky DNA adducts such as those caused by ubiquitous environmental mutagens including benzo(a)pyrene and other polycyclic aromatic hydrocarbons. Recent data suggest that exposure to environmentally relevant concentrations of estrogen decreases hepatic mRNA abundance of several key NER genes in adult zebrafish (Danio rerio). However, the impact of decreased hepatic NER expression on NER function was not investigated in the previous study. The goal of this study was to examine the effect of the potent estrogen receptor agonist 17alpha-ethinylestradiol (EE(2)) on rate and magnitude of bulky DNA adduct repair. Here we show that exposure of zebrafish liver (ZFL) cells to physiologically relevant concentrations of EE(2) resulted in reduced ability of ZFL cells to repair damaged DNA in comparison to control cells. Co-exposure to EE(2) and a complete estrogen receptor antagonist (ICI 182,780) also resulted in reduced NER capacity, whereas ICI 182,780 alone did not affect the ability of ZFL cells to repair UV damage. These results indicate that estrogen exposure can decrease cellular NER capacity and that this effect can occur in the presence of an estrogen receptor antagonist, suggesting that EE(2) can affect NER processes through mechanisms other than nuclear estrogen receptor activation.
Aquatic Toxicology | 2015
Nancy J. Brown-Peterson; Michelle O. Krasnec; Ryan Takeshita; Caitlin N. Ryan; Kimberly J. Griffitt; Claire R. Lay; Gregory D. Mayer; Keith M. Bayha; William E. Hawkins; Ian Lipton; Jeffrey M. Morris; Robert J. Griffitt
Exposure to oiled sediments can negatively impact the health of fish species. Here, we examine the effects of chronic exposure of juvenile southern flounder, Paralichthys lethostigma, to a sediment-oil mixture. Oil:sediment mixtures are persistent over time and can become bioavailable following sediment perturbation or resuspension. Juvenile flounder were exposed for 32 days under controlled laboratory conditions to five concentrations of naturally weathered Macondo MC252 oil mixed into uncontaminated, field-collected sediments. The percent composition of individual polycyclic aromatic hydrocarbons (PAHs) of the weathered oil did not change after mixing with the sediment. Spiked exposure sediments contained 0.04-395mg/kg tPAH50 (sum of 50 individual PAH concentration measurements). Mortality increased with both exposure duration and concentration of sediment-associated PAHs, and flounder exposed to concentrations above 8mg/kg tPAH50 showed significantly reduced growth over the course of the experiment. Evident histopathologic changes were observed in liver and gill tissues of fish exposed to more than 8mg/kg tPAH50. All fish at these concentrations showed hepatic intravascular congestion, macrovesicular hepatic vacoulation, telangiectasia of secondary lamellae, and lamellar epithelial proliferation in gill tissues. Dose-dependent upregulation of Cyp1a expression in liver tissues was observed. Taxonomic analysis of gill and intestinal commensal bacterial assemblages showed that exposure to oiled sediments led to distinct shifts in commensal bacterial population structures. These data show that chronic exposure to environmentally-relevant concentrations of oiled sediments produces adverse effects in flounder at multiple biological levels.
Chemosphere | 2015
Song Tang; Yonggan Wu; Caitlin N. Ryan; Shuangying Yu; Guangqiu Qin; Donn S. Edwards; Gregory D. Mayer
The ever-increasing production and use of nanocrystaline semiconductors (Quantum dots; QDs) will inevitably result in increased appearance of these nanomaterials in the aquatic environment. However, the behavior and potential toxicity of heavy metal constituted nanoparticulates in aquatic invertebrates is largely unknown, especially with regard to molecular responses. The freshwater crustacean Daphnia pulex is a well-suited toxicological and ecological model to study molecular responses to environmental stressors. In this study, D. pulex were exposed for 48 h to sublethal doses of QDs (25% and 50% of LC50) with differing spectral properties (CdTe and CdSe/ZnS QDs) and Cd and Zn salts. Our data suggest that acute exposure to both CdSO4 and Cd-based QDs leads to Cd uptake in vivo, which was biologically supported by the observation of increased expression of metallothionein (MT-1). Furthermore, Cd, Zn, and CdSe/ZnS QDs induced different patterns of gene expression regarding stress defense and DNA repair, which furthers our knowledge regarding which response pathways are affected by nanoparticulate forms of metals versus ionic forms in aquatic crustaceans.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2010
E. David Thompson; Karen E. Burwinkel; Anil Kumar Chava; Emily G. Notch; Gregory D. Mayer
The environmental pollutants inorganic arsenic (iAs) and benzo[a]pyrene (B[a]P) are carcinogens often found together in groundwater. The hepatic metabolism of B[a]P is a multi-step process requiring several Phase I and Phase II enzymes, notably cytochrome p450 1A (CYP1A), epoxide hydrolase (EH), and glutathione S-transferase (GST). The purpose of this study was to examine the effect of arsenite (As(III)) on the activity of these enzymes in vivo utilizing adult zebrafish (Danio rerio). Zebrafish were exposed to either 0.4 microM B[a]P, 0.4 microM B[a]P+0.4 microM As(III), 0.4 microM B[a]P+8 microM As(III), 0.4 microM As(III), or 8 microM As(III) for 7 days. Co-exposures to As(III) and B[a]P led to significant decreases in CYP1A enzyme activity (approximately 3-fold) when compared to exposure to B[a]P alone. No similar effects occurred with EH or GST, although B[a]P exposure did significantly increase EH activity. Furthermore As(III) and B[a]P co-exposures significantly decreased CYP1A transcript levels (up to 35-fold) when compared to B[a]P. However, B[a]P-induced CYP1A protein levels remained elevated following co-exposures to As(III). This evidence suggests that As(III) has the potential to modify components of the B[a]P biotransformation pathway in vivo via a disruption of CYP1A activity by way of both pre- and post-translational mechanisms.
General and Comparative Endocrinology | 2011
Emily G. Notch; Gregory D. Mayer
A variety of pharmacological agonists, antagonists and selective estrogen receptor modulators (SERM) have been used to better understand the role of specific receptors in various physiological processes. Despite similar structure and function, less is known about the effect of agonists and antagonists on teleost estrogen receptors and the results of these studies have indicated wide variation among species. The goal of this study was to determine the ability of two human SERMs to modulate activation of three zebrafish estrogen receptor isoforms. Full length cDNA of zebrafish estrogen receptor 1 (esr1), estrogen receptor 2a (esr2a) and estrogen receptor 2b (esr2b) were cloned into expression vectors and transfected into cells that do not endogenously express any estrogen receptor along with an estrogen responsive luciferase vector. Cells transfected with any of the zebrafish estrogen receptors individually and then exposed to 17β-estradiol (E₂) or 17α-ethinylestradiol (EE₂) exhibited a dose dependent increase in luciferase activity. None of the pharmacological antagonists, ICI 182, 780, methyl-piperidino-pyrazole (MPP) or pyrazolo [1,5-a] pyrimidine (PHTPP), were able to independently transactivate luciferase expression with any of the zebrafish estrogen receptors. Of the three ER antagonists, only ICI 182, 780 was able to block EE₂ induced luciferase activity, although a 10 to 100-fold excess of ICI 182, 780 was necessary with all receptors. Neither MPP nor PHTPP were able to block EE₂ induced luciferase activity with any isoform of zebrafish estrogen receptor. These results indicate that the difference between human ER and zebrafish ER ligand binding is not conserved enough for the SERMs MPP or PHTPP to elicit similar effects in zebrafish as those manifested in humans.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009
Emily G. Notch; Gregory D. Mayer
Wastewater treatment effluent is a complex mixture of anthropogenic pollutants including estrogenic substances and chemicals, such as polyaromatic hydrocarbons, that cause bulky DNA adducts. Significant research focuses on reproductive effects of aquatic estrogens from wastewater treatment plants. However, other studies suggest genotoxic and immunological effects occur at lower concentrations of wastewater treatment effluent than reproductive endpoints. Recently, effects of estrogen on DNA repair processes in zebrafish have been suggested as a possible mechanism by which estrogen can modulate incidence of DNA mutations. Because wastewater treatment facilities are a significant source of estrogenic compounds, we hypothesized that exposure to whole effluents would also affect DNA repair in zebrafish (Danio rerio). Exposure to effluent from multiple treatment facilities in northern Maine decreased repair of DNA adducts in zebrafish liver cells. Expression of two nucleotide excision repair genes, XPC and XPA, were quantified and showed varied response after exposure in adult male zebrafish. Evidence of estrogen and aryl hydrocarbon receptor activation after exposure varied between treatment plants and temporally within treatment plants when evaluated using a traditional biomarker, vitellogenin-1 (VTG) and, cytochrome p450 1A1 (CYP1A1) mRNA abundance. This research highlights the continuing importance of examining non-reproductive effects of wastewater treatment effluent.
Toxins | 2012
Asha Jaja-Chimedza; Miroslav Gantar; Gregory D. Mayer; Patrick D.L. Gibbs; John P. Berry
Cyanobacteria (“blue-green algae”) are recognized producers of a diverse array of toxic secondary metabolites. Of these, the lipopolysaccharides (LPS), produced by all cyanobacteria, remain to be well investigated. In the current study, we specifically employed the zebrafish (Danio rerio) embryo to investigate the effects of LPS from geographically diverse strains of the widespread cyanobacterial genus, Microcystis, on several detoxifying enzymes/pathways, including glutathione-S-transferase (GST), glutathione peroxidase (GPx)/glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT), and compared observed effects to those of heterotrophic bacterial (i.e., E. coli) LPS. In agreement with previous studies, cyanobacterial LPS significantly reduced GST in embryos exposed to LPS in all treatments. In contrast, GPx moderately increased in embryos exposed to LPS, with no effect on reciprocal GR activity. Interestingly, total glutathione levels were elevated in embryos exposed to Microcystis LPS, but the relative levels of reduced and oxidized glutathione (i.e., GSH/GSSG) were, likewise, elevated suggesting that oxidative stress is not involved in the observed effects as typical of heterotrophic bacterial LPS in mammalian systems. In further support of this, no effect was observed with respect to CAT or SOD activity. These findings demonstrate that Microcystis LPS affects glutathione-based detoxification pathways in the zebrafish embryo, and more generally, that this model is well suited for investigating the apparent toxicophore of cyanobacterial LPS, including possible differences in structure-activity relationships between heterotrophic and cyanobacterial LPS, and teleost fish versus mammalian systems.
Environmental Toxicology | 2011
Emily G. Notch; Danielle M. Miniutti; John P. Berry; Gregory D. Mayer
Cyanobacteria are prevalent in the freshwater environment, reaching critical mass in harmful algal blooms. These organisms produce a variety of toxins including endotoxins such as lipopolysaccharides (LPS), which have been previously shown to decrease glutathione‐S‐transferase (GST) activity in zebrafish (Danio rerio) embryos. GST plays a vital role in detoxification response during oxidative stress and provides a first line of defense after toxic heavy metal insult, before increased metallothionein expression. Although some attention has focused on cyanobacterial LPS, little research has focused on effects of concurrent exposures with other toxicants. Because cyanobacterial LPS can alter detoxification enzymes including GST, we hypothesized that cyanobacterial LPS could potentiate metal toxicity. This study investigated the effects of LPS from two cyanobacterial species, Lyngbya spp. and Microcystis aeruginosa, on cadmium toxicity in zebrafish embryos. Forty‐eight‐hour CdCl2 LC50 values showed that coexposure of cadmium and Lyngbya LPS or Microcystis LPS resulted in significantly increased cadmium toxicity in comparison with cadmium alone. However, increased cadmium toxicity was not due to decreased GST activity as initially hypothesized. In concurrent Microcystis LPS‐cadmium exposures, GST activity was significantly increased in comparison with control embryos at all time points and cadmium concentrations sampled. Concurrent Lyngbya LPS‐cadmium exposures also resulted in increased GST activity at most exposure concentrations. These results indicate that regardless of mechanism, cyanobacterial LPS can potentiate the toxic effects of heavy metals. This represents a significant risk for aquatic organisms exposed to combinations of LPS and metals in the environment.