Gregory Fischer
Medical College of Wisconsin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory Fischer.
Journal of Neuroscience Methods | 2011
Gregory Fischer; Sandra Kostic; Hiroyuki Nakai; Frank Park; Damir Sapunar; Hongwei Yu; Quinn H. Hogan
Direct injection of agents into the dorsal root ganglia (DRGs) offers the opportunity to manipulate sensory neuron function at a segmental level to explore pathophysiology of painful conditions. However, there is no described method that has been validated in detail for such injections in adult rats. We have found that 2 μl of dye injected through a pulled glass pipette directly into the distal DRG, exposed by a minimal foraminotomy, produces complete filling of the DRG with limited extension into the spinal roots. Injection into the spinal nerve required 3 μl to achieve comparable DRG filling, produced preferential spread into the ventral root, and was accompanied by substantial leakage of injected solution from the injection site. Injections into the sciatic nerve of volumes up to 10 μl did not reach the DRG. Transient hypersensitivity to mechanical stimulation at threshold (von Frey) and noxious levels (pin) developed after 2 μl saline injection directly into the DRG that was in part attributable to the surgical exposure procedure alone. Only minimal astrocyte activation in the spinal dorsal horn was evident after DRG saline injections. Injection of adeno-associated virus (AAV) vector conveying green fluorescent protein (GFP) transgene resulted in expression as soon as 1 day after injection into the DRG, including fibers in the spinal dorsal horn and columns. AAV injection into the DRG produced additional thermal hypersensitivity and withdrawal from the stroke of a brush and compromised motor performance. These findings demonstrate a method for selective injection of agents into single DRGs for anatomically restricted actions.
The Journal of Neuroscience | 2012
Qingbo Tang; Madhavi Latha Yadav Bangaru; Sandra Kostic; Bin Pan; Hsiang En Wu; Andrew S. Koopmeiners; Hongwei Yu; Gregory Fischer; J. Bruce McCallum; Wai-Meng Kwok; Andy Hudmon; Quinn H. Hogan
Currents through voltage-gated Ca2+ channels (ICa) may be regulated by cytoplasmic Ca2+ levels ([Ca2+]c), producing Ca2+-dependent inactivation (CDI) or facilitation (CDF). Since ICa regulates sensory neuron excitability, altered CDI or CDF could contribute to pain generation after peripheral nerve injury. We explored this by manipulating [Ca2+]c while recording ICa in rat sensory neurons. In uninjured neurons, elevating [Ca2+]c with a conditioning prepulse (−15 mV, 2 s) inactivated ICa measured during subsequent test pulses (−15 mV, 5 ms). This inactivation was Ca2+-dependent (CDI), since it was decreased with elimination of Ca2+ influx by depolarization to above the ICa reversal potential, with high intracellular Ca2+ buffering (EGTA 10 mm or BAPTA 20 mm), and with substitution of Ba2+ for extracellular Ca2+, revealing a residual voltage-dependent inactivation. At longer latencies after conditioning (>6 s), ICa recovered beyond baseline. This facilitation also proved to be Ca2+-dependent (CDF) using the protocols limiting cytoplasmic Ca2+ elevation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) blockers applied by bath (KN-93, myristoyl-AIP) or expressed selectively in the sensory neurons (AIP) reduced CDF, unlike their inactive analogues. Protein kinase C inhibition (chelerythrine) had no effect. Selective blockade of N-type Ca2+ channels eliminated CDF, whereas L-type channel blockade had no effect. Following nerve injury, CDI was unaffected, but CDF was eliminated in axotomized neurons. Excitability of sensory neurons in intact ganglia from control animals was diminished after a similar conditioning pulse, but this regulation was eliminated by injury. These findings indicate that ICa in sensory neurons is subject to both CDI and CDF, and that hyperexcitability following injury-induced loss of CDF may result from diminished CaMKII activity.
PLOS ONE | 2013
Hongwei Yu; Gregory Fischer; Lejla Ferhatovic; Fan Fan; Alan R. Light; Dorothee Weihrauch; Damir Sapunar; Hiroyuki Nakai; Frank Park; Quinn H. Hogan
We previously demonstrated safe and reliable gene transfer to the dorsal root ganglion (DRG) using a direct microinjection procedure to deliver recombinant adeno-associated virus (AAV) vector. In this study, we proceed to compare the in vivo transduction patterns of self-complementary (sc) AAV6 and AAV8 in the peripheral sensory pathway. A single, direct microinjection of either AAV6 or AAV8 expressing EGFP, at the adjusted titer of 2×109 viral particle per DRG, into the lumbar (L) 4 and L5 DRGs of adult rats resulted in efficient EGFP expression (48±20% for AAV6 and 25±4% for AAV8, mean ± SD) selectively in sensory neurons and their axonal projections 3 weeks after injection, which remained stable for up to 3 months. AAV6 efficiently transfers EGFP to all neuronal size groups without differential neurotropism, while AAV8 predominantly targets large-sized neurons. Neurons transduced with AAV6 penetrate into the spinal dorsal horn (DH) and terminate predominantly in superficial DH laminae, as well as in the dorsal columns and deeper laminae III-V. Only few AAV8-transduced afferents were evident in the superficial laminae, and spinal EGFP was mostly present in the deeper dorsal horn (lamina III-V) and dorsal columns, with substantial projections to the ventral horn. AAV6-mediated EGFP-positive nerve fibers were widely observed in the medial plantar skin of ipsilateral hindpaws. No apparent inflammation, tissue damage, or major pain behaviors were observed for either AAV serotype. Taken together, both AAV6 and AAV8 are efficient and safe vectors for transgene delivery to primary sensory neurons, but they exhibit distinct functional features. Intraganglionic delivery of AAV6 is more uniform and efficient compared to AAV8 in gene transfer to peripheral sensory neurons and their axonal processes.
Molecular Pain | 2015
Hongwei Yu; Gregory Fischer; Allison D. Ebert; Hsiang-en Wu; Xiaowen Bai; Quinn H. Hogan
Background Cell-based therapy may hold promise for treatment of chronic pain. Mesenchymal stem cells (MSCs) are readily available and robust, and their secretion of therapeutic peptides can be enhanced by genetically engineering. We explored the analgesic potential of transplanting bone marrow-derived MSCs that have been transduced with lentivectors. To optimize efficacy and safety, primary sensory neurons were targeted by MSC injection into the dorsal root ganglia (DRGs). Results MSCs were transduced using lentivectors to express enhanced green fluorescent protein (EGFP) or to co-express the analgesic peptide glial cell line-derived neurotrophic factor (GDNF) and EGFP by a viral 2A bicistronic transgene cassette. Engineered MSCs were injected into the 4th lumbar (L4) and L5 DRGs of adult allogeneic rats to evaluate survival in the DRGs. MSCs were detected by immunofluorescence staining up to 2–3 weeks after injection, distributed in the extracellular matrix space without disrupting satellite glial cell apposition to sensory neurons, suggesting well-tolerated integration of engrafted MSCs into DRG tissue. To examine their potential for inhibiting development of neuropathic pain, MSCs were injected into the L4 and L5 DRGs ipsilateral to a spinal nerve ligation injury. Animals injected with GDNF-engineered MSCs showed moderate but significant reduction in mechanical allodynia and hyperalgesia compared to controls implanted with MSCs expressing EGFP alone. We also observed diminished long-term survival of allografted MSCs at 3 weeks, and the development of a highly-proliferating population of MSCs in 12% of DRGs after transplantation. Conclusions These data indicate that genetically modified MSCs secreting analgesic peptides could potentially be developed as a novel DRG-targeted cell therapy for treating neuropathic pain. However, further work is needed to address the challenges of MSC survival and excess proliferation, possibly with trials of autologous MSCs, evaluation of clonally selected populations of MSCs, and investigation of regulation of MSC proliferation.BackgroundCell-based therapy may hold promise for treatment of chronic pain. Mesenchymal stem cells (MSCs) are readily available and robust, and their secretion of therapeutic peptides can be enhanced by genetically engineering. We explored the analgesic potential of transplanting bone marrow-derived MSCs that have been transduced with lentivectors. To optimize efficacy and safety, primary sensory neurons were targeted by MSC injection into the dorsal root ganglia (DRGs).ResultsMSCs were transduced using lentivectors to express enhanced green fluorescent protein (EGFP) or to co-express the analgesic peptide glial cell line-derived neurotrophic factor (GDNF) and EGFP by a viral 2A bicistronic transgene cassette. Engineered MSCs were injected into the 4th lumbar (L4) and L5 DRGs of adult allogeneic rats to evaluate survival in the DRGs. MSCs were detected by immunofluorescence staining up to 2–3 weeks after injection, distributed in the extracellular matrix space without disrupting satellite glial cell apposition to sensory neurons, suggesting well-tolerated integration of engrafted MSCs into DRG tissue. To examine their potential for inhibiting development of neuropathic pain, MSCs were injected into the L4 and L5 DRGs ipsilateral to a spinal nerve ligation injury. Animals injected with GDNF-engineered MSCs showed moderate but significant reduction in mechanical allodynia and hyperalgesia compared to controls implanted with MSCs expressing EGFP alone. We also observed diminished long-term survival of allografted MSCs at 3 weeks, and the development of a highly-proliferating population of MSCs in 12% of DRGs after transplantation.ConclusionsThese data indicate that genetically modified MSCs secreting analgesic peptides could potentially be developed as a novel DRG-targeted cell therapy for treating neuropathic pain. However, further work is needed to address the challenges of MSC survival and excess proliferation, possibly with trials of autologous MSCs, evaluation of clonally selected populations of MSCs, and investigation of regulation of MSC proliferation.
Methods of Molecular Biology | 2016
Hongwei Yu; Gregory Fischer; Quinn H. Hogan
Transferring genetic molecules into the peripheral sensory nervous system to manipulate nociceptive pathophysiology is a powerful approach for experimental modulation of sensory signaling and potentially for translation into therapy for chronic pain. This can be efficiently achieved by the use of recombinant adeno-associated virus (rAAV) in conjunction with nociceptor-specific regulatory transgene cassettes. Among different routes of delivery, direct injection into the dorsal root ganglia (DRGs) offers the most efficient AAV-mediated gene transfer selectively into the peripheral sensory nervous system. Here, we briefly discuss the advantages and applications of intraganglionic microinjection, and then provide a detailed approach for DRG injection, including a list of the necessary materials and description of a method for performing DRG microinjection experiments. We also discuss our experience with several adeno-associated virus (AAV) options for in vivo transgene expression in DRG neurons.
Brain Research | 2016
Fei Wang; Hongfei Xiang; Gregory Fischer; Zhen Liu; Matthew J. Dupont; Quinn H. Hogan; Hongwei Yu
In dorsal root ganglia (DRG), satellite glial cells (SGCs) tightly ensheathe the somata of primary sensory neurons to form functional sensory units. SGCs are identified by their flattened and irregular morphology and expression of a variety of specific marker proteins. In this report, we present evidence that the 3-hydroxy-3-methylglutaryl coenzyme A synthase isoenzymes 1 and 2 (HMGCS1 and HMGCS2) are abundantly expressed in SGCs. Immunolabeling with the validated antibodies revealed that both HMGCS1 and HMGCS2 are highly colabeled with a selection of SGC markers, including GS, GFAP, Kir4.1, GLAST1, GDNF, and S100 but not with microglial cell marker Iba1, myelin sheath marker MBP, and neuronal marker β3-tubulin or phosphorylated CaMKII. HMGCS1 but not HMGCS2 immunoreactivity in SGCs is reduced in the fifth lumbar (L5) DRGs that contain axotomized neurons following L5 spinal nerve ligation (SNL) in rats. Western blot showed that HMGCS1 protein level in axotomized L5 DRGs is reduced after SNL to 66±8% at 3 days (p<0.01, n=4 animals in each group) and 58±13% at 28 days (p<0.001, n=9 animals in each group) of its level in control samples, whereas HMGCS2 protein was comparable between injured and control DRGs. These results identify HMGCSs as the alternative markers for SGCs in DRGs. Downregulated HMGCS1 expression in DRGs after spinal nerve injury may reflect a potential role of abnormal sterol metabolism of SGCs in the nerve injured-induced neuropathic pain.
Molecular Pain | 2017
Hongfei Xiang; Zhen Liu; Fei Wang; Hao Xu; Christopher J. Roberts; Gregory Fischer; Cheryl L. Stucky; Caron Dean; Bin Pan; Quinn H. Hogan; Hongwei Yu
Background TRPV1 (transient receptor potential vanilloid subfamily member 1) is a pain signaling channel highly expressed in primary sensory neurons. Attempts for analgesia by systemic TRPV1 blockade produce undesirable side effects, such as hyperthermia and impaired heat pain sensation. One approach for TRPV1 analgesia is to target TRPV1 along the peripheral sensory pathway. Results For functional blockade of TRPV1 signaling, we constructed an adeno-associated virus (AAV) vector expressing a recombinant TRPV1 interfering peptide aptamer, derived from a 38mer tetrameric assembly domain (TAD), encompassing residues 735 to 772 of rat TRPV1, fused to the C-terminus of enhanced green fluorescent protein (EGFP). AAV-targeted sensory neurons expressing EGFP-TAD after vector injection into the dorsal root ganglia (DRG) revealed decreased inward calcium current and diminished intracellular calcium accumulation in response to capsaicin, compared to neurons of naïve or expressing EGFP alone. To examine the potential for treating neuropathic pain, AAV-EGFP-TAD was injected into fourth and fifth lumbar (L) DRGs of rats subjected to neuropathic pain by tibial nerve injury (TNI). Results showed that AAV-directed selective expression of EGFP-TAD in L4/L5 DRG neuron somata, and their peripheral and central axonal projections can limit TNI-induced neuropathic pain behavior, including hypersensitivity to heat and, to a less extent, mechanical stimulation. Conclusion Selective inhibition of TRPV1 activity in primary sensory neurons by DRG delivery of AAV-encoded analgesic interfering peptide aptamers is efficacious in attenuation of neuropathic pain. With further improvements of vector constructs and in vivo application, this approach might have the potential to develop as an alternative gene therapy strategy to treat chronic pain, especially heat hypersensitivity, without complications due to systemic TRPV1 blockade.
Molecular Pain | 2016
Zhen Liu; Fei Wang; Gregory Fischer; Quinn H. Hogan; Hongwei Yu
Background Gαi-interacting protein (GINIP) is expressed specifically in dorsal root ganglion (DRG) neurons and functions in modulation of peripheral gamma-aminobutyric acid B receptor (GBR). Genetic deletion of GINIP leads to impaired responsiveness to GBR agonist-mediated analgesia in rodent. It is, however, not defined whether nerve injury changes GINIP expression. Results Immunolabeling with validated antibody revealed GINIP expression in ∼40% of total lumbar DRG neurons in normal adult rats. GINIP immunoreactivity was detected in ∼80% of IB4-positive (nonpeptidergic) and ∼30% of CGRP-positive (peptidergic) neurons. GINIP immunoreactivity in the spinal cord dorsal horn was colabeled with IB4 and partially with CGRP. In addition, GINIP was expressed in DRG neurons immunopositive for GBR1, GBR2, Gαi(s), and Gαo and was also extensively colabeled with multiple nociceptive neuronal markers, including Trpv1, NaV1.7, CaV2.2α1b, CaV3.2α1b, TrkA, and Trek2. Peripheral nerve injury by L5 spinal nerve ligation significantly decreased the proportion of GINIP immunoreactivity-positive neurons from 40 ± 8.4% to 0.8 ± 0.1% (p < 0.01, mean ± SD, four weeks after spinal nerve ligation) and the total GINIP protein to 1.3% ± 0.04% of its basal level (p < 0.01, n = 6 animals in each group, two weeks after spinal nerve ligation) in the ipsilateral L5 DRGs. Conclusion Our results show that GINIP is predominantly expressed by small nonpeptidergic nociceptive neurons and that nerve injury triggers loss of GINIP expression. Signal transduction roles of GINIP may be diverse as it colabeled with various subgroups of nociceptive neurons. Future studies may investigate details of the signaling mechanism engaged by GINIP, as well as the pathophysiological significance of lost expression of GINIP in neuropathic pain.
PLOS ONE | 2015
Hongwei Yu; Gregory Fischer; Lejla Ferhatovic; Fan Fan; Alan R. Light
[This corrects the article DOI: 10.1371/journal.pone.0061266.].
Molecular Therapy | 2015
Quinn H. Hogan; Gregory Fischer; Dean Caron; Hongwei Yu
Recombinant adeno-associated viral (AAV)-mediated therapeutic gene transfer is an effective and safe tool for the treatment of chronic pain. Activated glial cells play important roles in pain pathophysiology and are promising targets for the therapeutic intervention. However, the natural tropism of AAV vectors leads to gene transfer predominantly to neurons while glial cells are refractory to AAV transduction in both the central and peripheral nervous system (CNS and PNS). AAVshH10 is a recently engineered novel AAV6-like variant that demonstrates efficient and selective Muller glia transduction in the retina. The present study was designed to evaluate whether in vivo glia transduction in the dorsal root ganglion (DRG) and the spinal cord (SC) could be enhanced using AAVshH10. Titer-matched AAVshH10 and original AAV6, both encoding the enhanced green fluorescent protein (EGFP) reporter driven by the ubiquitous cell-potent CMV promoter, were injected into DRGs and spinal cords (SCs) of adult rats. Neurotropism of gene transfer by AAVshH10 in comparison to AAV6 was determined by immunohistochemistry. Results showed that injection of AAVshH10 into DRGs and SCs resulted in a similar profile to its parent AAV6, both showing efficient transduction of all sub-populations of sensory neurons in DRGs or the neurons in SCs, without significant transduction of glial cell populations in both sites. Together, this study demonstrates an efficient neuronal but limited glia transduction of AAVshH10, which can be used as a viable alternative to AAV6 for efficient neuronal transduction in DRGs and SCs.