Gregory J. Newman
Colorado State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory J. Newman.
Ecological Monographs | 1999
Thomas J. Stohlgren; Dan Binkley; Geneva W. Chong; Mohammed A. Kalkhan; Lisa D. Schell; Kelly A. Bull; Yuka Otsuki; Gregory J. Newman; Michael Bashkin; Yowhan Son
Some theories and experimental studies suggest that areas of low plant spe- cies richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m 2 subplots (20 1000-m 2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m 2 subplots (16 1000-m 2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm. At the 1-m 2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m 2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m 2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m 2 plots was explained by the number of native plant species and the total percentage of soil carbon. At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and biodiversity), are invasible in many landscapes; and (2) this pattern may be more closely related to the degree resources are available in native plant communities, independent of species richness. Exotic plant in- vasions in rare habitats and distinctive plant communities pose a significant challenge to land managers and conservation biologists.
Biological Invasions | 2010
Alycia Crall; Gregory J. Newman; Catherine S. Jarnevich; Thomas J. Stohlgren; Donald M. Waller; Jim Graham
Limited resources make it difficult to effectively document, monitor, and control invasive species across large areas, resulting in large gaps in our knowledge of current and future invasion patterns. We surveyed 128 citizen science program coordinators and interviewed 15 of them to evaluate their potential role in filling these gaps. Many programs collect data on invasive species and are willing to contribute these data to public databases. Although resources for education and monitoring are readily available, groups generally lack tools to manage and analyze data. Potential users of these data also retain concerns over data quality. We discuss how to address these concerns about citizen scientist data and programs while preserving the advantages they afford. A unified yet flexible national citizen science program aimed at tracking invasive species location, abundance, and control efforts could be designed using centralized data sharing and management tools. Such a system could meet the needs of multiple stakeholders while allowing efficiencies of scale, greater standardization of methods, and improved data quality testing and sharing. Finally, we present a prototype for such a system (see www.citsci.org).
Public Understanding of Science | 2013
Alycia Crall; Rebecca Jordan; Kirstin A. Holfelder; Gregory J. Newman; Jim Graham; Donald M. Waller
Citizen science can make major contributions to informal science education by targeting participants’ attitudes and knowledge about science while changing human behavior towards the environment. We examined how training associated with an invasive species citizen science program affected participants in these areas. We found no changes in science literacy or overall attitudes between tests administered just before and after a one-day training program, matching results from other studies. However, we found improvements in science literacy and knowledge using context-specific measures and in self-reported intention to engage in pro-environmental activities. While we noted modest change in knowledge and attitudes, we found comparison and interpretation of these data difficult in the absence of other studies using similar measures. We suggest that alternative survey instruments are needed and should be calibrated appropriately to the pre-existing attitudes, behavior, and levels of knowledge in these relatively sophisticated target groups.
Frontiers in Ecology and the Environment | 2006
Alycia Crall; Laura A. Meyerson; Thomas J. Stohlgren; Catherine S. Jarnevich; Gregory J. Newman; Jim Graham
Non-native species continue to be introduced to the United States from other countries via trade and transportation, creating a growing need for early detection and rapid response to new invaders. It is therefore increasingly important to synthesize existing data on non-native species abundance and distributions. However, no comprehensive analysis of existing data has been undertaken for non-native species, and there have been few efforts to improve collaboration. We therefore conducted a survey to determine what datasets currently exist for non-native species in the US from county, state, multi-state region, national, and global scales. We identified 319 datasets and collected metadata for 79% of these. Through this study, we provide a better understanding of extant non-native species datasets and identify data gaps (ie taxonomic, spatial, and temporal) to help guide future survey, research, and predictive modeling efforts.
Biological Invasions | 2012
Alycia Crall; Mark J. Renz; Brendon Panke; Gregory J. Newman; Carmen T. Chapin; Jim Graham; Chuck Bargeron
Early detection and rapid response (EDRR) seek to control or eradicate new invasions to prevent their spread, but effective EDRR remains elusive due to financial and managerial constraints. As part of the Great Lakes Early Detection Network, we asked stakeholders to indicate their needs for an effective EDRR communication tool. Our results led to the development of a website with five primary features: (1) the ability for casual observers to report a sighting; (2) a network of professionals to verify new sightings; (3) email alerts of new sightings, including data from all data providers across the region; (4) maps of species distributions across data providers; and (5) easy communication channels among stakeholders. Using results from our stakeholder discussions, we provide a cost-effective framework for online EDRR networks that integrate data and develop social capital through a virtual community. This framework seeks to provide real-time data on current species distributions and improve across jurisdictional collaboration with limited oversight.
Biological Invasions | 2007
Catherine S. Jarnevich; Jim Graham; Gregory J. Newman; Alycia Crall; Thomas J. Stohlgren
Data sensitivity can pose a formidable barrier to data sharing. Knowledge of species current distributions from data sharing is critical for the creation of watch lists and an early warning/rapid response system and for model generation for the spread of invasive species. We have created an on-line system to synthesize disparate datasets of non-native species locations that includes a mechanism to account for data sensitivity. Data contributors are able to mark their data as sensitive. This data is then ‘fuzzed’ in mapping applications and downloaded files to quarter-quadrangle grid cells, but the actual locations are available for analyses. We propose that this system overcomes the hurdles to data sharing posed by sensitive data.
Western North American Naturalist | 2007
Paul H. Evangelista; Sunil Kumar; Thomas J. Stohlgren; Alycia Crall; Gregory J. Newman
Abstract Predictive models of aboveground biomass of nonnative Tamarix ramosissima of various sizes were developed using destructive sampling techniques on 50 individuals and four 100-m2 plots. Each sample was measured for average height (m) of stems and canopy area (m2) prior to cutting, drying, and weighing. Five competing regression models (P < 0.05) were developed to estimate aboveground biomass of T. ramosissima using average height and/or canopy area measurements and were evaluated using Akaikes Information Criterion corrected for small sample size (AICc). Our best model (AICc = −148.69, ΔAICc = 0) successfully predicted T. ramosissima aboveground biomass (R2 = 0.97) and used average height and canopy area as predictors. Our 2nd-best model, using the same predictors, was also successful in predicting aboveground biomass (R2 = 0.97, AICc = −131.71, ΔAICc = 16.98). A 3rd model demonstrated high correlation between only aboveground biomass and canopy area (R2 = 0.95), while 2 additional models found high correlations between aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, respectively). These models illustrate how simple field measurements, such as height and canopy area, can be used in allometric relationships to accurately predict aboveground biomass of T. ramosissima. Although a correction factor may be necessary for predictions at larger scales, the models presented will prove useful for many research and management initiatives.
Frontiers of Earth Science in China | 2011
Jim Graham; Catherine S. Jarnevich; Annie Simpson; Gregory J. Newman; Thomas J. Stohlgren
Invasive species are a universal global problem, but the information to identify them, manage them, and prevent invasions is stored around the globe in a variety of formats. The Global Invasive Species Information Network is a consortium of organizations working toward providing seamless access to these disparate databases via the Internet. A distributed network of databases can be created using the Internet and a standard web service protocol. There are two options to provide this integration. First, federated searches are being proposed to allow users to search “deep” web documents such as databases for invasive species. A second method is to create a cache of data from the databases for searching. We compare these two methods, and show that federated searches will not provide the performance and flexibility required from users and a central cache of the datum are required to improve performance.
Applied Environmental Education & Communication | 2013
Karina C. Mullen; Gregory J. Newman; Jessica Leigh Thompson
Interviews with national park visitors across the country revealed that climate change education through place-based, hands-on learning using repeat photographs and technology is appealing to park visitors. This manuscript provides a summary of the development of a repeat photography citizen science Web site for national parks in Southwest Alaska. Lessons learned from interviews on the Web development process are summarized to inform similar future projects: (a) Hold a face-to-face meeting in the same location with the whole research group, (b) Provide a central document accessible to the entire group listing tasks completed and to be accomplished, (c) Create a well-developed marketing plan to promote Web site, and (d) Incorporate evaluation components throughout the process to ensure clear communication.
Conservation Letters | 2011
Alycia Crall; Gregory J. Newman; Thomas J. Stohlgren; Kirstin A. Holfelder; Jim Graham; Donald M. Waller