Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory L. Brower is active.

Publication


Featured researches published by Gregory L. Brower.


Hypertension | 2010

Interleukin 6 Mediates Myocardial Fibrosis, Concentric Hypertrophy, and Diastolic Dysfunction in Rats

Giselle C. Meléndez; Jennifer L. McLarty; Scott P. Levick; Yan Du; Joseph S. Janicki; Gregory L. Brower

Although there is a correlation between hypertension and levels of interleukin (IL) 6, the exact role this cytokine plays in myocardial remodeling is unknown. This is complicated by the variable tissue and circulating levels of IL-6 reported in numerous experimental models of hypertension. Accordingly, we explored the hypothesis that elevated levels of IL-6 mediate adverse myocardial remodeling. To this end, adult male Sprague-Dawley rats were infused with IL-6 (2.5 &mgr;g · kg−1 · h−1, IP) for 7 days via osmotic minipump and compared with vehicle-infused, aged-matched controls. Left ventricular function was evaluated using a blood-perfused isolated heart preparation. Myocardial interstitial collagen volume fraction and isolated cardiomyocyte size were also assessed. Isolated adult cardiac fibroblast experiments were performed to determine the importance of the soluble IL-6 receptor in mediating cardiac fibrosis. IL-6 infusions in vivo resulted in concentric left ventricular hypertrophy, increased ventricular stiffness, a marked increase in collagen volume fraction (6.2% versus 1.7%; P<0.001), and proportional increases in cardiomyocyte width and length, all independent of blood pressure. The soluble IL-6 receptor in combination with IL-6 was found to be essential to producing increased collagen concentration by isolated cardiac fibroblasts and also played a role in mediating a phenotypic conversion to myofibroblasts. These novel observations demonstrate that IL-6 induces a myocardial phenotype almost identical to that of the hypertensive heart, identifying IL-6 as potentially important in this remodeling process.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Nrf2 Protects Against Maladaptive Cardiac Responses to Hemodynamic Stress

Jinqing Li; Tomonaga Ichikawa; Luis Villacorta; Joseph S. Janicki; Gregory L. Brower; Masayuki Yamamoto; Taixing Cui

Background—Reactive oxygen species (ROS) play an important role in the maintenance of cardiovascular homeostasis. The present study sought to determine whether nuclear factor erythroid-2 related factor 2 (Nrf2), a master gene of the endogenous antioxidant defense system, is a critical regulator of the cardiac hypertrophic response to pathological stress. Methods and Results—Cardiac hypertrophy and dysfunction were established in mice by transverse aortic constriction (TAC). Nrf2 expression was transiently increased and then declined to the basal level while impairment of cardiac function proceeded. The knockout of Nrf2 (Nrf2−/−) did not cause any apparent structural and functional abnormalities in the unstressed heart. However, Nrf2−/− mice after TAC developed pathological cardiac hypertrophy, significant myocardial fibrosis and apoptosis, overt heart failure, and increased mortality, which were associated with elevated myocardial levels of 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine and a complete blockade of the myocardial expression of several antioxidant genes. Overexpression of Nrf2 dramatically inhibited hypertrophic factor–induced ROS production and growth in both cardiomyocytes and cardiac fibroblasts, whereas knockdown of Nrf2 exerted opposite effects in both cells. Conclusions—These findings demonstrate that activation of Nrf2 provides a novel mechanism to protect the murine heart against pathological cardiac hypertrophy and heart failure via suppressing oxidative stress.


Cardiovascular Research | 2011

Cardiac mast cells: the centrepiece in adverse myocardial remodelling

Scott P. Levick; Giselle C. Meléndez; Eric Plante; Jennifer L. McLarty; Gregory L. Brower; Joseph S. Janicki

Increased numbers of mast cells have been reported in explanted human hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension, myocardial infarction, and chronic volume overload secondary to aortocaval fistula and mitral regurgitation. Accordingly, mast cells have been implicated to have a major role in the pathophysiology of these cardiovascular disorders. In vitro studies have verified that mast cell proteases are capable of activating collagenase, gelatinases and stromelysin. Recent results have shown that with chronic ventricular volume overload, there is an elevation in mast cell density, which is associated with a concomitant increase in matrix metalloproteinase (MMP) activity and extracellular matrix degradation. However, the role of the cardiac mast cell is not one dimensional, with evidence from hypertension and cardiac transplantation studies suggesting that they can also assume a pro-fibrotic phenotype in the heart. These adverse events do not occur in mast cell deficient rodents or when cardiac mast cells are pharmacologically prevented from degranulating. This review is focused on the regulation and dual roles of cardiac mast cells in: (i) activating MMPs and causing myocardial fibrillar collagen degradation and (ii) causing fibrosis in the stressed, injured or diseased heart. Moreover, there is strong evidence that premenopausal female cardioprotection may at least partly be due to gender differences in cardiac mast cells. This too will be addressed.


Hypertension | 2009

Cardiac Mast Cells Mediate Left Ventricular Fibrosis in the Hypertensive Rat Heart

Scott P. Levick; Jennifer L. McLarty; David B. Murray; Rebecca M. Freeman; Wayne Carver; Gregory L. Brower

Correlative data suggest that cardiac mast cells are a component of the inflammatory response that is important to hypertension-induced adverse myocardial remodeling. However, a causal relationship has not been established. We hypothesized that adverse myocardial remodeling would be inhibited by preventing the release of mast cell products that may interact with fibroblasts and other inflammatory cells. Eight-week-old male spontaneously hypertensive rats were treated for 12 weeks with the mast cell stabilizing compound nedocromil (30 mg/kg per day). Age-matched Wistar-Kyoto rats served as controls. Nedocromil prevented left ventricular fibrosis in the spontaneously hypertensive rat independent of hypertrophy and blood pressure, despite cardiac mast cell density being elevated. The mast cell protease tryptase was elevated in the spontaneously hypertensive rat myocardium and was normalized by nedocromil. Treatment of isolated adult spontaneously hypertensive rat cardiac fibroblasts with tryptase induced collagen synthesis and proliferation, suggesting this as a possible mechanism of mast cell–mediated fibrosis. In addition, nedocromil prevented macrophage infiltration into the ventricle. The inflammatory cytokines interferon-&ggr; and interleukin (IL)-4 were increased in the spontaneously hypertensive rat and normalized by nedocromil, whereas IL-6 and IL-10 were decreased in the spontaneously hypertensive rat, with nedocromil treatment normalizing IL-6 and increasing IL-10 above the control. These results demonstrate for the first time a causal relationship between mast cell activation and fibrosis in the hypertensive heart. Furthermore, these results identify several mechanisms, including tryptase, inflammatory cell recruitment, and cytokine regulation, by which mast cells may mediate hypertension-induced left ventricular fibrosis.


Hypertension | 2010

Sympathetic Nervous System Modulation of Inflammation and Remodeling in the Hypertensive Heart

Scott P. Levick; David B. Murray; Joseph S. Janicki; Gregory L. Brower

Chronic activation of the sympathetic nervous system is a key component of cardiac hypertrophy and fibrosis. However, previous studies have provided evidence that also implicate inflammatory cells, including mast cells (MCs), in the development of cardiac fibrosis. The current study investigated the potential interaction of cardiac MCs with the sympathetic nervous system. Eight-week–old male spontaneously hypertensive rats were sympathectomized to establish the effect of the sympathetic nervous system on cardiac MC density, myocardial remodeling, and cytokine production in the hypertensive heart. Age-matched Wistar Kyoto rats served as controls. Cardiac fibrosis and hypertension were significantly attenuated and left ventricular mass normalized, whereas cardiac MC density was markedly increased in sympathectomized spontaneously hypertensive rats. Sympathectomy normalized myocardial levels of interferon-&ggr;, interleukin 6, and interleukin 10, but had no effect on interleukin 4. The effects of norepinephrine and substance P on isolated cardiac MC activation were investigated as potential mechanisms of interaction between the two. Only substance P elicited MC degranulation. Substance P was also shown to induce the production of angiotensin II by a mixed population of isolated cardiac inflammatory cells, including MCs, lymphocytes, and macrophages. These results demonstrate the ability of neuropeptides to regulate inflammatory cell function, providing a potential mechanism by which the sympathetic nervous system and afferent nerves may interact with inflammatory cells in the hypertensive heart.


American Journal of Physiology-heart and Circulatory Physiology | 2009

TNF-α inhibition attenuates adverse myocardial remodeling in a rat model of volume overload

Lynetta J. Jobe; Giselle C. Meléndez; Scott P. Levick; Yan Du; Gregory L. Brower; Joseph S. Janicki

Tumor necrosis factor (TNF)-alpha is a proinflammatory cytokine that has been implicated in the pathogenesis of heart failure. In contrast, we have recently shown that myocardial levels of TNF-alpha are acutely elevated in the aortocaval (AV) fistula model of heart failure. Based on these observations, we hypothesized that progression of adverse myocardial remodeling secondary to volume overload would be prevented by inhibition of TNF-alpha with etanercept. Furthermore, a principal objective of this study was to elucidate the effect of TNF-alpha inhibition during different phases of the myocardial remodeling process. Eight-week-old male Sprague-Dawley rats were randomly divided into the following three groups: sham-operated controls, untreated AV fistulas, and etanercept-treated AV fistulas. Each group was further subdivided to study three different time points consisting of 3 days, 3 wk, and 8 wk postfistula. Etanercept was administered subcutaneously at 1 mg/kg body wt. Etanercept prevented collagen degradation at 3 days and significantly attenuated the decrease in collagen at 8 wk postfistula. Although TNF-alpha antagonism did not prevent the initial ventricular dilatation at 3 wk postfistula, etanercept was effective at significantly attenuating the subsequent ventricular hypertrophy, dilatation, and increased compliance at 8 wk postfistula. These positive adaptations achieved with etanercept administration translated into significant functional improvements. At a cellular level, etanercept also markedly attenuated increases in cardiomyocyte length, width, and area at 8 wk postfistula. These observations demonstrate that TNF-alpha has a pivotal role in adverse myocardial remodeling and that treatment with etanercept can attenuate the progression to heart failure.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Estrogen attenuates chronic volume overload induced structural and functional remodeling in male rat hearts

Jason D. Gardner; David B. Murray; Tetyana G. Voloshenyuk; Gregory L. Brower; Jessica M. Bradley; Joseph S. Janicki

We have previously reported gender differences in ventricular remodeling and development of heart failure using the aortocaval fistula model of chronic volume overload in rats. In contrast to males, female rats exhibited no adverse ventricular remodeling and less mortality in response to volume overload. This gender-specific cardioprotection was lost following ovariectomy and was partially restored using estrogen replacement. However, it is not known if estrogen treatment would be as effective in males. The purpose of this study was to evaluate the structural and functional effects of estrogen in male rats subjected to chronic volume overload. Four groups of male rats were studied at 3 days and 8 wk postsurgery as follows: fistula and sham-operated controls, with and without estrogen treatment. Biochemical and histological studies were performed at 3 days postsurgery, with chronic structural and functional effects studied at 8 wk. Measurement of systolic and diastolic pressure-volume relationships was obtained using a blood-perfused isolated heart preparation. Both fistula groups developed significant ventricular hypertrophy after 8 wk of volume overload. Untreated rats with fistula exhibited extensive ventricular dilatation, which was coupled with a loss of systolic function. Estrogen attenuated left ventricular dilatation and maintained function in treated rats. Estrogen treatment was also associated with a reduction in oxidative stress and circulating endothelin-1 levels, as well as prevention of matrix metalloproteinase-2 and -9 activation and breakdown of ventricular collagen in the early stage of remodeling. These data demonstrate that estrogen attenuates ventricular remodeling and disease progression in male rats subjected to chronic volume overload.


Journal of Molecular and Cellular Cardiology | 2008

Protection from adverse myocardial remodeling secondary to chronic volume overload in mast cell deficient rats

Scott P. Levick; Jason D. Gardner; Merrilee Holland; Martin Hauer-Jensen; Joseph S. Janicki; Gregory L. Brower

Mast cells have diverse roles throughout the body as evidenced by their heterogeneous nature. In the heart, cardiac mast cells have been implicated in left ventricular (LV) remodeling in response to elevated myocardial stress. Accordingly, the purpose of this study was to use mast cell deficient rats (Ws/Ws) to delineate the interaction between cardiac mast cell activation and LV remodeling. LV matrix metalloproteinase (MMP) activity, fibrillar collagen, TNF-alpha levels, and LV diameter were compared in Ws/Ws and wild type (WT) rats subjected to 5 d (n=3/group) and 8 weeks (n=4/group) of aortocaval fistula-induced volume overload. In contrast to attenuation of myocardial remodeling in the Ws/Ws group: 1) MMP-2 activity was significantly increased in the WT group at 5 days; 2) there was marked degradation of the extracellular collagen matrix in WT at 5 days and 8 weeks; 3) the percent increase in LV diameter from baseline was significantly greater in WT at 2, 4, 6, and 8 weeks post-fistula; and 4) myocardial TNF-alpha levels were markedly elevated in the WT group at 5 days post-fistula. These results underscore the importance of cardiac mast cells in mediating MMP activation, collagen degradation and LV dilatation and suggest that mast cell-derived TNF-alpha plays a role in early myocardial remodeling.


Hypertension | 2011

Tryptase/Protease-Activated Receptor 2 Interactions Induce Selective Mitogen-Activated Protein Kinase Signaling and Collagen Synthesis by Cardiac Fibroblasts

Jennifer L. McLarty; Giselle C. Meléndez; Gregory L. Brower; Joseph S. Janicki; Scott P. Levick

The mast cell product, tryptase, has recently been implicated to mediate fibrosis in the hypertensive heart. Tryptase has been shown to mediate noncardiac fibroblast function via activation of protease-activated receptor 2 and subsequent activation of the mitogen-activated protein kinase pathway, including extracellular signal–regulated kinase 1/2. Therefore, we hypothesized that this pathway may be a mechanism leading to fibrosis in the hypertensive heart. Isolated adult cardiac fibroblasts were treated with tryptase, which induced activation of extracellular signal–regulated kinase 1/2 via protease-activated receptor 2. Blockade of protease activated receptor 2 with FSLLRY (10 &mgr;mol/L) and inhibition of the extracellular signal–regulated kinase pathway with PD98059 (10 &mgr;mol/L) prevented collagen synthesis in isolated cardiac fibroblasts stimulated with tryptase. In contrast, p38 mitogen-activated protein kinase and stress-activated protein/c-Jun N-terminal kinase were not activated by tryptase. Cardiac fibroblasts isolated from spontaneously hypertensive rats showed this same pattern of activation. Treatment of spontaneously hypertensive rats with FSLLRY prevented fibrosis in these animals, indicating the in vivo applicability of the cultured fibroblast findings. Also, tryptase induced a myofibroblastic phenotype indicated by elevations in &agr;-smooth muscle actin and extra type III domain A (ED-A) fibronectin. Thus, the results from this study demonstrate the importance of tryptase for inducing a cardiac myofibroblastic phenotype, ultimately leading to the development of cardiac fibrosis. Specifically, tryptase causes cardiac fibroblasts to increase collagen synthesis via a mechanism involving activation of protease-activated receptor 2 and subsequent induction of extracellular signal–regulated kinase signaling.


Advances in Experimental Medicine and Biology | 1995

Ventricular Remodeling in Heart Failure: The Role of Myocardial Collagen

Joseph S. Janicki; Gregory L. Brower; Jeffrey R. Henegar; Lizhen Wang

Collagen which is present in the myocardium in relatively small amounts is the most abundant structural protein of the connective tissue network. Its structural organization consists of a complex weave of collagen fibers that surrounds and interconnects myocytes, groups of myocytes, muscle fibers and muscle bundles. The conformation of interstitial fibrillar collagen makes it highly resistant to degradation by all proteinases other than specific collagenases. In hearts with myocardial damage secondary to myocardial infarction, chronic ischemia, inflammation, or cardiomyopathy, a complex sequence of compensatory events occur that eventually result in an adverse left ventricular remodeling. This continual state of remodeling is characterized by persistent collagenase activity, fibrillar collagen degradation, and progressive myocyte loss. The net effect is a shift in the balance between collagen synthesis and degradation which leads to an inadequate fibrillar collagen matrix, progressive ventricular dilatation and sphericalization with wall thinning and eventual congestive heart failure.

Collaboration


Dive into the Gregory L. Brower's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott P. Levick

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

David B. Murray

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer L. McLarty

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Loren G Morgan

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Mary F. Forman

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Du

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Eric Plante

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge