Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory L. Szeto is active.

Publication


Featured researches published by Gregory L. Szeto.


Nature | 2014

Structure-based programming of lymph-node targeting in molecular vaccines

Haipeng Liu; Kelly D. Moynihan; Yiran Zheng; Gregory L. Szeto; Adrienne V. Li; Bonnie Huang; Debra S. Van Egeren; Clara Park; Darrell J. Irvine

In cancer patients, visual identification of sentinel lymph nodes (LNs) is achieved by the injection of dyes that bind avidly to endogenous albumin, targeting these compounds to LNs, where they are efficiently filtered by resident phagocytes. Here we translate this ‘albumin hitchhiking’ approach to molecular vaccines, through the synthesis of amphiphiles (amph-vaccines) comprising an antigen or adjuvant cargo linked to a lipophilic albumin-binding tail by a solubility-promoting polar polymer chain. Administration of structurally optimized CpG-DNA/peptide amph-vaccines in mice resulted in marked increases in LN accumulation and decreased systemic dissemination relative to their parent compounds, leading to 30-fold increases in T-cell priming and enhanced anti-tumour efficacy while greatly reducing systemic toxicity. Amph-vaccines provide a simple, broadly applicable strategy to simultaneously increase the potency and safety of subunit vaccines.


Nature Medicine | 2016

Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses

Kelly D. Moynihan; Cary Francis Opel; Gregory L. Szeto; Alice Tzeng; Eric F. Zhu; Jesse M. Engreitz; Robert T. Williams; Kavya Rakhra; Michael H Zhang; Adrienne Rothschilds; Sudha Kumari; Ryan L. Kelly; Byron Hua Kwan; Wuhbet Abraham; Kevin Hu; Naveen K. Mehta; Monique J. Kauke; Heikyung Suh; Jennifer R. Cochran; Douglas A. Lauffenburger; K. Dane Wittrup; Darrell J. Irvine

Checkpoint blockade with antibodies specific for cytotoxic T lymphocyte–associated protein (CTLA)-4 or programmed cell death 1 (PDCD1; also known as PD-1) elicits durable tumor regression in metastatic cancer, but these dramatic responses are confined to a minority of patients. This suboptimal outcome is probably due in part to the complex network of immunosuppressive pathways present in advanced tumors, which are unlikely to be overcome by intervention at a single signaling checkpoint. Here we describe a combination immunotherapy that recruits a variety of innate and adaptive immune cells to eliminate large tumor burdens in syngeneic tumor models and a genetically engineered mouse model of melanoma; to our knowledge tumors of this size have not previously been curable by treatments relying on endogenous immunity. Maximal antitumor efficacy required four components: a tumor-antigen-targeting antibody, a recombinant interleukin-2 with an extended half-life, anti-PD-1 and a powerful T cell vaccine. Depletion experiments revealed that CD8+ T cells, cross-presenting dendritic cells and several other innate immune cell subsets were required for tumor regression. Effective treatment induced infiltration of immune cells and production of inflammatory cytokines in the tumor, enhanced antibody-mediated tumor antigen uptake and promoted antigen spreading. These results demonstrate the capacity of an elicited endogenous immune response to destroy large, established tumors and elucidate essential characteristics of combination immunotherapies that are capable of curing a majority of tumors in experimental settings typically viewed as intractable.


PLOS Pathogens | 2014

Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes.

Richard Brad Jones; Rachel O'Connor; Stefanie Mueller; Maria Hottelet Foley; Gregory L. Szeto; Dan Karel; Mathias Lichterfeld; Colin Kovacs; Mario A. Ostrowski; Alicja Trocha; Darrell J. Irvine; Bruce D. Walker

Resting memory CD4+ T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis), such as suberanilohydroxamic acid (SAHA), romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL). Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i) the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii) the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia.


The Journal of Infectious Diseases | 2010

Minocycline attenuates HIV infection and reactivation by suppressing cellular activation in human CD4+ T cells.

Gregory L. Szeto; Angela K. Brice; Hung-Chih Yang; Sheila A. Barber; Robert F. Siliciano; Janice E. Clements

Treatment of human immunodeficiency virus (HIV) infection with highly active antiretroviral therapy (HAART) is effective but can be associated with toxic effects and is expensive. Other options may be useful for long-term therapy. The immunomodulatory antibiotic minocycline could be an effective, low-cost adjunctive treatment to HAART. Minocycline mediated a dose-dependent decrease in single-cycle CXCR4-tropic HIV infection and decreased viral RNA after infection of CD4+ T cells with HIV NL4-3. Reactivation from latency was also decreased in a primary CD4+ T cell-derived model and in resting CD4+ T cells from HIV-infected patients. Minocycline treatment resulted in significant changes in activation marker expression and inhibited proliferation and cytokine secretion of CD4+ T cells in response to activation. This study demonstrates that minocycline reduces HIV replication and reactivation and decreases CD4+ T cell activation. The anti-HIV effects of minocycline are mediated by altering the cellular environment rather than directly targeting virus, placing minocycline in the class of anticellular anti-HIV drugs.


Nature Communications | 2016

A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages

Robert J. Kimmerling; Gregory L. Szeto; Jennifer W. Li; Alex S. Genshaft; Samuel W. Kazer; Kristofor Robert Payer; Jacob de Riba Borrajo; Paul C. Blainey; Darrell J. Irvine; Alex K. Shalek; Scott R. Manalis

We introduce a microfluidic platform that enables off-chip single-cell RNA-seq after multi-generational lineage tracking under controlled culture conditions. We use this platform to generate whole-transcriptome profiles of primary, activated murine CD8+ T-cell and lymphocytic leukemia cell line lineages. Here we report that both cell types have greater intra- than inter-lineage transcriptional similarity. For CD8+ T-cells, genes with functional annotation relating to lymphocyte differentiation and function—including Granzyme B—are enriched among the genes that demonstrate greater intra-lineage expression level similarity. Analysis of gene expression covariance with matched measurements of time since division reveals cell type-specific transcriptional signatures that correspond with cell cycle progression. We believe that the ability to directly measure the effects of lineage and cell cycle-dependent transcriptional profiles of single cells will be broadly useful to fields where heterogeneous populations of cells display distinct clonal trajectories, including immunology, cancer, and developmental biology.


Analytical Chemistry | 2012

Cellular barcodes for efficiently profiling single-cell secretory responses by microengraving.

Yvonne J. Yamanaka; Gregory L. Szeto; Todd M. Gierahn; Talitha L. Forcier; Kelly F. Benedict; Mavis S. Brefo; Douglas A. Lauffenburger; Darrell J. Irvine; J. Christopher Love

We present a method that uses fluorescent cellular barcodes to increase the number of unique samples that can be analyzed simultaneously by microengraving, a nanowell array-based technique for quantifying the secretory responses of thousands of single cells in parallel. Using n different fluorescent dyes to generate 2(n) unique cellular barcodes, we achieved a 2(n)-fold reduction in the number of arrays and quantity of reagents required per sample. The utility of this approach was demonstrated in three applications of interest in clinical and experimental immunology. Using barcoded human peripheral blood mononuclear cells and T cells, we constructed dose-response curves, profiled the secretory behavior of cells treated with mechanistically distinct stimuli, and tracked the secretory behaviors of different lineages of CD4(+) T helper cells. In addition to increasing the number of samples analyzed by generating secretory profiles of single cells from multiple populations in a time- and reagent-efficient manner, we expect that cellular barcoding in combination with microengraving will facilitate unique experimental opportunities for quantitatively analyzing interactions among heterogeneous cells isolated in small groups (~2-5 cells).


Nature Communications | 2016

Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd.

Zichen Wang; Caroline D. Monteiro; Kathleen M. Jagodnik; Nicolas F. Fernandez; Gregory W. Gundersen; Andrew D. Rouillard; Sherry L. Jenkins; Axel S Feldmann; Kevin Hu; Michael G. McDermott; Qiaonan Duan; Neil R. Clark; Matthew R. Jones; Yan Kou; Troy Goff; Holly Woodland; Fabio M R. Amaral; Gregory L. Szeto; Oliver Fuchs; Sophia Miryam Schüssler-Fiorenza Rose; Shvetank Sharma; Uwe Schwartz; Xabier Bengoetxea Bausela; Maciej Szymkiewicz; Vasileios Maroulis; Anton Salykin; Carolina M. Barra; Candice D. Kruth; Nicholas J. Bongio; Vaibhav Mathur

Gene expression data are accumulating exponentially in public repositories. Reanalysis and integration of themed collections from these studies may provide new insights, but requires further human curation. Here we report a crowdsourcing project to annotate and reanalyse a large number of gene expression profiles from Gene Expression Omnibus (GEO). Through a massive open online course on Coursera, over 70 participants from over 25 countries identify and annotate 2,460 single-gene perturbation signatures, 839 disease versus normal signatures, and 906 drug perturbation signatures. All these signatures are unique and are manually validated for quality. Global analysis of these signatures confirms known associations and identifies novel associations between genes, diseases and drugs. The manually curated signatures are used as a training set to develop classifiers for extracting similar signatures from the entire GEO repository. We develop a web portal to serve these signatures for query, download and visualization.


Scientific Reports | 2015

Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines.

Gregory L. Szeto; Debra S. Van Egeren; Hermoon Worku; Armon Sharei; Brian Alejandro; Clara Park; Kirubel Frew; Mavis S. Brefo; Shirley Mao; Megan Heimann; Robert Langer; Klavs F. Jensen; Darrell J. Irvine

B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.


Journal of Biological Chemistry | 2011

Minocycline Suppresses Activation of Nuclear Factor of Activated T Cells 1 (NFAT1) in Human CD4+ T Cells

Gregory L. Szeto; Joel L. Pomerantz; David R. Graham; Janice E. Clements

Minocycline is a tetracycline family antibiotic that has anti-inflammatory and immunomodulatory properties. These properties have shown promise in the treatment of conditions such as rheumatoid arthritis, Huntington disease, and multiple sclerosis. As lymphocyte activation is involved in the pathogenesis of many of these diseases, T cells are postulated to be a primary target in minocycline therapy. Previous studies have demonstrated attenuation of CD4+ T cell activation by minocycline, but a specific mechanism has not been elucidated. In this study, we investigated the effect of minocycline on the activity of three key transcription factors regulating CD4+ T cell activation: NF-κB, AP-1 (activator protein 1), and NFAT (nuclear factor of activated T) cells. Our data demonstrate that minocycline selectively impairs NFAT-mediated transcriptional activation, a result of increased phosphorylation and reduced nuclear translocation of the isoform NFAT1. Minocycline increased the activity of the NFAT kinase GSK3 and decreased intracellular Ca2+ flux, both of which facilitate NFAT1 phosphorylation. These findings provide a novel mechanism for minocycline induced suppression of CD4+ T cell activation and may better inform the application of minocycline as an immunomodulatory agent.


Science Signaling | 2015

CD4+ T cell–dependent and CD4+ T cell–independent cytokine-chemokine network changes in the immune responses of HIV-infected individuals

Kelly B. Arnold; Gregory L. Szeto; Galit Alter; Darrell J. Irvine; Douglas A. Lauffenburger

Mathematical analysis of the cytokine secretion profiles of collections of patient immune cells uncovers network-level effects of HIV infection. HIV infection impairs more than just T cells Infection with HIV, the virus that causes AIDS, results in substantial CD4+ T cell loss, which impairs immune responses to bacterial and fungal infections. To uncover changes in other immune cell types, Arnold et al. compared the pathogen-induced responses of peripheral blood mononuclear cells (PBMCs) from HIV-infected patients with the responses of PBMCs from healthy donors. They also analyzed the responses of healthy donor PBMCs that were experimentally depleted of CD4+ T cells to mimic the HIV-infected state. Mathematical analysis predicted and experiments showed that, independently from the loss of CD4+ T cells, the defective response of the immune cell network in HIV-infected patients to pathogens was associated with decreased production of interferon-γ by natural killer cells. Similar analysis of immune cells populations, rather than of purified subsets, may help to identify network-level effects in other diseases. A vital defect in the immune systems of HIV-infected individuals is the loss of CD4+ T cells, resulting in impaired immune responses. We hypothesized that there were CD4+ T cell–dependent and CD4+ T cell–independent alterations in the immune responses of HIV-1+ individuals. To test this, we analyzed the secretion of cytokines and chemokines from stimulated peripheral blood mononuclear cell (PBMC) populations from HIV+ donors, healthy donors, and healthy donors with CD4+ T cells experimentally depleted. Multivariate analyses of 16 cytokines and chemokines at 6 and 72 hours after three stimuli (antibody-coated beads to stimulate T cells and R848 or lipopolysaccharide to stimulate innate immune cells) enabled integrative analysis of secreted profiles. Two major effects in HIV+ PBMCs were not reproduced upon depletion of CD4+ T cells in healthy PBMCs: (i) HIV+ PBMCs maintained T cell–associated secreted profiles after T cell stimulation; (ii) HIV+ PBMCs showed impaired interferon-γ (IFN-γ) secretion early after innate stimulation. These changes arose from hyperactive T cells and debilitated natural killer (NK) cell, respectively. Modeling and experiments showed that early IFN-γ secretion predicted later differences in secreted profiles in vitro. This effect was recapitulated in healthy PBMCs by blocking the IFN-γ receptor. Thus, we identified a critical deficiency in NK cell responses of HIV-infected individuals, independent of CD4+ T cell depletion, which directs secreted profiles. Our findings illustrate a broad approach for identifying key disease-associated nodes in a multicellular, multivariate signaling network.

Collaboration


Dive into the Gregory L. Szeto's collaboration.

Top Co-Authors

Avatar

Darrell J. Irvine

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Douglas A. Lauffenburger

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Debra S. Van Egeren

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mavis S. Brefo

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brian Alejandro

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Clara Park

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Haipeng Liu

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

J. Christopher Love

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joel Voldman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kelly D. Moynihan

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge