Gregory M.K. Poon
Georgia State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory M.K. Poon.
Aaps Journal | 2014
Irene Giang; Erin L. Boland; Gregory M.K. Poon
Prodrugs are widely used in the targeted delivery of cytotoxic compounds to cancer cells. To date, targeted prodrugs for cancer therapy have achieved great diversity in terms of target selection, activation chemistry, as well as size and physicochemical nature of the prodrug. Macromolecular prodrugs such as antibody-drug conjugates, targeted polymer-drug conjugates and other conjugates that self-assemble to form liposomal and micellar nanoparticles currently represent a major trend in prodrug development for cancer therapy. In this review, we explore a unified view of cancer-targeted prodrugs and highlight several examples from recombinant technology that exemplify the prodrug concept but are not identified as such. Recombinant “prodrugs” such as engineered anthrax toxin show promise in biological specificity through the conditionally targeting of multiple cellular markers. Conditional targeting is achieved by structural complementation, the spontaneous assembly of engineered inactive subunits or fragments to reconstitute functional activity. These complementing systems can be readily adapted to achieve conditionally bispecific targeting of enzymes that are used to activate low-molecular weight prodrugs. By leveraging strengths from medicinal chemistry, polymer science, and recombinant technology, prodrugs are poised to remain a core component of highly focused and tailored strategies aimed at conditionally attacking complex molecular phenotypes in clinically relevant cancer.
Analytical Biochemistry | 2010
Gregory M.K. Poon
Isothermal titration calorimetry (ITC) produces a differential heat signal with respect to the total titrant concentration. This feature gives ITC excellent sensitivity for studying the thermodynamics of complex biomolecular interactions in solution. Currently, numerical methods for data fitting are based primarily on indirect approaches rooted in the usual practice of formulating biochemical models in terms of integrated variables. Here, a direct approach is presented wherein ITC models are formulated and solved as numerical initial value problems for data fitting and simulation purposes. To do so, the ITC signal is cast explicitly as a first-order ordinary differential equation (ODE) with total titrant concentration as independent variable and the concentration of a bound or free ligand species as dependent variable. This approach was applied to four ligand-receptor binding and homotropic dissociation models. Qualitative analysis of the explicit ODEs offers insights into the behavior of the models that would be inaccessible to indirect methods of analysis. Numerical ODEs are also highly compatible with regression analysis. Since solutions to numerical initial value problems are straightforward to implement on common computing platforms in the biochemical laboratory, this method is expected to facilitate the development of ITC models tailored to any experimental system of interest.
Nucleic Acids Research | 2014
Manoj Munde; Shuo Wang; Arvind Kumar; Chad E. Stephens; Abdelbasset A. Farahat; David W. Boykin; W. David Wilson; Gregory M.K. Poon
ETS transcription factors mediate a wide array of cellular functions and are attractive targets for pharmacological control of gene regulation. We report the inhibition of the ETS-family member PU.1 with a panel of novel heterocyclic diamidines. These diamidines are derivatives of furamidine (DB75) in which the central furan has been replaced with selenophene and/or one or both of the bridging phenyl has been replaced with benzimidazole. Like all ETS proteins, PU.1 binds sequence specifically to 10-bp sites by inserting a recognition helix into the major groove of a 5′-GGAA-3′ consensus, accompanied by contacts with the flanking minor groove. We showed that diamidines target the minor groove of AT-rich sequences on one or both sides of the consensus and disrupt PU.1 binding. Although all of the diamidines bind to one or both of the expected sequences within the binding site, considerable heterogeneity exists in terms of stoichiometry, site–site interactions and induced DNA conformation. We also showed that these compounds accumulate in live cell nuclei and inhibit PU.1-dependent gene transactivation. This study demonstrates that heterocyclic diamidines are capable of inhibiting PU.1 by targeting the flanking sequences and supports future efforts to develop agents for inhibiting specific members of the ETS family.
Journal of Biological Chemistry | 2014
Shuo Wang; Miles H. Linde; Manoj Munde; Victor D. Carvalho; W. David Wilson; Gregory M.K. Poon
Background: ETS family transcription factors recognize DNA via structurally conserved DNA-binding domains that share limited amino acid homology. Results: DNA recognition by the ETS domains of Ets-1 and PU.1, two extreme sequence-divergent paralogs, was compared. Conclusion: Preferential hydration differentiates DNA recognition by Ets-1 and PU.1. Significance: Preferential hydration represents a potential mechanism for PU.1 regulation and its activity as a pioneer transcription factor in vivo. ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a “dry” mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, whereas PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high affinity PU.1·DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydration-dependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages.
Journal of Biological Chemistry | 2012
Gregory M.K. Poon
Background: PU.1 recognizes a large number of binding sites with differing affinities. Results: The role of hydration in sequence-specific binding by the ETS domain of PU.1 was determined. Conclusion: Sequence discrimination is linked to the uptake of specifically bound waters at the protein-DNA interface. Significance: The sequence specificity of PU.1 ETS is directly related to the transactivational activity and frequency of in vivo binding sites for the full-length protein. PU.1 is an essential transcription factor in normal hematopoietic lineage development. It recognizes a large number of promoter sites differing only in bases flanking a core consensus of 5′-GGAA-3′. DNA binding is mediated by its ETS domain, whose sequence selectivity directly corresponds to the transactivational activity and frequency of binding sites for full-length PU.1 in vivo. To better understand the basis of sequence discrimination, we characterized its binding properties to a high affinity and low affinity site. Despite sharing a homologous structural framework as confirmed by DNase I and hydroxyl radical footprinting, the two complexes exhibit striking heterogeneity in terms of hydration properties. High affinity binding is destabilized by osmotic stress, whereas low affinity binding is insensitive. Dimethyl sulfate footprinting showed that the major groove at the core consensus is protected in the high affinity complex but accessible in the low affinity one. Finally, destabilization of low affinity binding by salt is in quantitative agreement with the number of phosphate contacts but is substantially attenuated in high affinity binding. These observations support a mechanism of sequence discrimination wherein specifically bound water molecules couple flanking backbone contacts with base-specific interactions in a sequestered cavity at the core consensus. The implications of this model with respect to other ETS paralogs are discussed.
Journal of Molecular Biology | 2013
Manoj Munde; Gregory M.K. Poon; W. David Wilson
Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤10(5)M(-)(1)s(-)(1)), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>10(7)M(-)(1)s(-)(1)). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes.
Nucleic Acids Research | 2015
Gaofei He; Ana Tolic; James K. Bashkin; Gregory M.K. Poon
The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only for DNA complexes of PU.1. Free solution measurements by dynamic light scattering showed PU.1 to be more dynamic than Ets-1; moreover, dynamic changes are strongly coupled to site discrimination by PU.1, but not Ets-1. Interrogation of the protein/DNA interface by DNA footprinting showed similar accessibility to dimethyl sulfate for PU.1/DNA and Ets-1/DNA complexes, indicating that the dynamics of PU.1/DNA complexes reside primarily outside that interface. An information-based analysis of the two homologs’ binding motifs suggests a role for dynamic coupling in PU.1s ability to enforce a more stringent sequence preference than Ets-1 and its proximal sequence homologs.
Nucleic Acids Research | 2016
Dominique C. Stephens; Gregory M.K. Poon
Transactivation by the ETS family of transcription factors, whose members share structurally conserved DNA-binding domains, is variably sensitive to methylation of their target genes. The mechanism by which DNA methylation controls ETS proteins remains poorly understood. Uncertainly also pervades the effects of hemi-methylated DNA, which occurs following DNA replication and in response to hypomethylating agents, on site recognition by ETS proteins. To address these questions, we measured the affinities of two sequence-divergent ETS homologs, PU.1 and Ets-1, to DNA sites harboring a hemi- and fully methylated CpG dinucleotide. While the two proteins bound unmethylated DNA with indistinguishable affinity, their affinities to methylated DNA are markedly heterogeneous and exhibit major energetic coupling between the two CpG methylcytosines. Analysis of simulated DNA and existing co-crystal structures revealed that hemi-methylation induced non-local backbone and groove geometries that were not conserved in the fully methylated state. Indirect readout of these perturbations was differentially achieved by the two ETS homologs, with the distinctive interfacial hydration in PU.1/DNA binding moderating the inhibitory effects of DNA methylation on binding. This data established a biophysical basis for the pioneering properties associated with PU.1, which robustly bound fully methylated DNA, but not Ets-1, which was substantially inhibited.
Nucleic Acids Research | 2016
Dominique C. Stephens; Hye Mi Kim; Arvind Kumar; Abdelbasset A. Farahat; David W. Boykin; Gregory M.K. Poon
Heterocyclic dications are receiving increasing attention as targeted inhibitors of transcription factors. While many dications act as purely competitive inhibitors, some fail to displace protein efficiently at drug concentrations expected to saturate their DNA target. To achieve a mechanistic understanding of these non-competitive effects, we used a combination of dications, which are intrinsically fluorescent and spectrally-separated fluorescently labeled DNA to dissect complex interactions in multi-component drug/DNA/protein systems. Specifically, we interrogated site-specific binding by the transcription factor PU.1 and its perturbation by DB270, a furan-bisbenzimidazole-diamidine that strongly targets PU.1 binding sites yet poorly inhibits PU.1/DNA complexes. By titrating DB270 and/or cyanine-labeled DNA with protein or unlabeled DNA, and following the changes in their fluorescence polarization, we found direct evidence that DB270 bound protein independently of their mutual affinities for sequence-specific DNA. Each of the three species competed for the other two, and this interplay of mutually dependent equilibria abrogated DB270s inhibitory activity, which was substantively restored under conditions that attenuated DB270/PU.1 binding. PU.1 binding was consistent with DB270s poor inhibitory efficacy of PU.1 in vivo, while its isosteric selenophene analog (DB1976), which did not bind PU.1 and strongly inhibited the PU.1/DNA complex in vitro, fully antagonized PU.1-dependent transactivation in vivo.
Biophysical Journal | 2013
Camille Keeler; Gregory M.K. Poon; Ivana Y. Kuo; Barbara E. Ehrlich; Michael E. Hodsdon
We present an improved and extended version of a recently proposed mathematical approach for modeling isotherms of ligand-to-macromolecule binding from isothermal titration calorimetry. Our approach uses ordinary differential equations, solved implicitly and numerically as initial value problems, to provide a quantitative description of the fraction bound of each competing member of a complex mixture of macromolecules from the basis of general binding polynomials. This approach greatly simplifies the formulation of complex binding models. In addition to our generalized, model-free approach, we have introduced a mathematical treatment for the case where ligand is present before the onset of the titration, essential for data analysis when complete removal of the binding partner may disrupt the structural and functional characteristics of the macromolecule. Demonstration programs playable on a freely available software platform are provided. Our method is experimentally validated with classic calcium (Ca(2+)) ion-selective potentiometry and isotherms of Ca(2+) binding to a mixture of chelators with and without residual ligand present in the reaction vessel. Finally, we simulate and compare experimental data fits for the binding isotherms of Ca(2+) binding to its canonical binding site (EF-hand domain) of polycystin 2, a Ca(2+)-dependent channel with relevance to polycystic kidney disease.