Gregory Opiteck
Bristol-Myers Squibb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gregory Opiteck.
Molecular & Cellular Proteomics | 2004
Estelle M. Fach; Leahann Garulacan; Ji Gao; Qing Xiao; Stephen M. Storm; Yves Dubaquie; Stanley A. Hefta; Gregory Opiteck
The purpose of this study was to identify in vitro and then prioritize a tractable set of protein biomarker candidates of atherosclerosis that may eventually be developed to measure the extent, progression, regression, and stability of atherosclerotic lesions. A study was conducted using an in vitro“foam cell” model based on the stimulation of differentiated THP1 cells with oxidized low-density lipoprotein (oxidized LDL) as compared with low-density lipoprotein (LDL). Analysis of the proteins contained in the cell supernatant using proteome scanning technology identified 59 proteins as being increased, 57 with no statistically measurable difference, and 17 decreasing in abundance following treatment with oxidized LDL, as compared with LDL. From the up-regulated list, proteins were prioritized based on their analytical confidence as well as their relevance to atherosclerosis pathways. Within the group of increased abundance, seven families of proteins were of particular interest: fatty acid-binding proteins, chitinase-like enzymes, cyclophilins, cathepsins, proteoglycans, urokinase-type plasminogen activator receptor, and a macrophage scavenger receptor.
Clinical Proteomics | 2004
Jeffrey D. Hulmes; Deidra Bethea; Keith Ho; Shu-Pang Huang; Deborah L. Ricci; Gregory Opiteck; Stanley A. Hefta
In order to evaluate the critical components of the process necessary to preserve clinical plasma samples collected at research sites for proteomic analysis, various collection and preservation protocols with controlled experimentation were evaluated. The presence of a protease inhibitor cocktail (PIC) included in the blood draw tube would stabilize the plasma proteins was hypothesized. To test this hypothesis, four plasma samples from each of 14 volunteers were collected. Samples were treated following a standard protocol that included PIC or were subjected to various processing treatments that included time, temperature, different anticoagulants, and the absence of PIC. Large format two dimensional-polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis and enzyme immunoassay (EIA) were used to detect differences between the treatment groups. A novel 2D-PAGE quality scoring method was developed to determine global differences in the treatment groups, wherein a rating scale questionnaire was used to quantify the quality of each 2D-PAGE gel. The data generated from EIAs, classical 2D-PAGE image analysis and 2D-PAGE quality scoring, each generated similar results. Inclusion of protease inhibitor cocktail in the sample tubes, provided stable and reliable human plasma samples that yielded reproducible results by proteomic analysis. When PIC was included, samples retained stability under less stringent processing, such that refrigeration for several hours before processing or one freeze-thaw cycle had little detrimental effect. We demonstrated that samples without PIC, from either heparin or ethylenediaminetetraacetic acid (EDTA) plasma tubes, gave results that varied significantly from the control samples. Also, even with PIC present in blood tubes, we found it was important to quickly decant the separated plasma from the cellular components found in the blood tubes following centrifugation, as prolonged exposure again yielded different results from the standard procedure.
Journal of Laboratory Automation | 2004
Keith Ho; Qing Xiao; Estelle M. Fach; Jeffrey D. Hulmes; Deidra Bethea; Gregory Opiteck; Joseph Y. Lu; Paul S. Kayne; Stanley A. Hefta
The discovery of new biomarkers will be an essential step to enhance our ability to better diagnose and treat human disease. The proteomics research community has recently increased its use of human blood (plasma/serum) as a sample source for these discoveries. However, while blood is fairly non-invasive and readily available as a specimen, it is not easily analyzed by liquid chromatography (LC)/mass spectrometry (MS), because of its complexity. Therefore, sample preparation is a crucial step prior to the analysis of blood. This sample preparation must also be standardized in order to gain the most information from these valuable samples and to ensure reproducibility. We have designed a semi-automated and highly parallel procedure for the preparation of human plasma samples. Our process takes the samples through eight successive steps before analysis by LC/MS: (1) receipt, (2) reformatting, (3) filtration, (4) depletion, (5) concentration determination and normalization, (6) digestion, (7) extraction, and (8) randomization, triplication, and lyophilization. These steps utilize a number of different liquid handlers and liquid chromatography (LC) systems. This process enhances our ability to discover new biomarkers from human plasma.
Expert Review of Proteomics | 2004
Gregory Opiteck; Julie E Scheffler
The cornerstone of proteomics resides in using traditional methods of protein chemistry, to extract and resolve complex mixtures, in concert with the powerful engines of mass spectrometry to decipher peptide and protein identities. The broad utility of proteomics technologies to map protein interactions, understand regulatory mechanisms and identify biomarkers associated with disease states and drug treatments necessitates a targeted biochemical approach tailored to the characteristics of the tissue, fluid or cellular extract being studied. The application of affinity methods in proteomic studies to focus on particular classes of molecules is being used with increasing frequency and comprises the subject of this review. An overview of successfully applied affinity methods is provided, along with speculation on the use of innovative approaches. Sample preparation and processing are critical for proteomics with affinity reagents, as only functional and active proteins can be isolated in most cases. Considerations for methods of sample preparation to optimize affinity capture and release are also discussed.
Analytical Biochemistry | 2003
Tiffany R. Kline; James Pang; Stanley A. Hefta; Gregory Opiteck; Susan E. Kiefer; Julie E Scheffler
A process to extract and enrich extracellular peptides and proteins from tissues should have broad utility in the burgeoning proteomics field. To address this need, a novel three-step protocol was developed to extract polypeptides from whole tissue samples and enrich the extracellular components. The initial homogenization of rat brain was carried out at neutral pH to optimize protein and peptide stability and solubility. Subsequent covalent chromatography on an activated thiopropyl resin was employed to debulk the tissue extract by selectively removing a substantial fraction of the intracellular protein component under nondenaturing conditions. Finally, extraction with 0.1% trifluoroacetic acid was used to selectively precipitate large proteins while enhancing the solubility of smaller proteins and peptides. The fractions from each step in the process were compared to a single extract obtained by homogenization in 0.5 M acetic acid. The recovery and yields of endogenous neuropeptides and an exogenously added peptide were evaluated by enzyme immunoassay and Western blotting, respectively. In summary, the three-step protocol was superior to the extraction of tissue with 0.5 M acetic acid in terms of peptide recovery, enrichment, and sample stability. Enrichment of the extracellular protein compartment from tissues should be valuable in proteomics experiments aimed at identifying biomarkers that can partition into serum.
Journal of Proteome Research | 2003
Ji Gao; Gregory Opiteck; Mark S. Friedrichs; and Ashok R. Dongre; Stanley A. Hefta
Methods | 2005
Ji Gao; Leahann Garulacan; Stephen M. Storm; Gregory Opiteck; Yves Dubaquie; Stanley A. Hefta; Donna M. Dambach; Ashok Dongre
Toxicology in Vitro | 2004
Ji Gao; Leah Ann Garulacan; Stephen M. Storm; Stanley A. Hefta; Gregory Opiteck; Jun-Hsiang Lin; Frederic Moulin; Donna M. Dambach
Biopolymers | 2001
Ashok Dongre; Gregory Opiteck; Wesley L. Cosand; Stanley A. Hefta
Archive | 2003
Gena S. Whitney; Gregory Opiteck; Leah Ann Garulacan; Chandra S. Ramanathan; Murray McKinnon; Kelley L. Bennett; Lauren E. Barber; Angela Cacace; Zenta Tsuchihashi