Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory R. Hoffman is active.

Publication


Featured researches published by Gregory R. Hoffman.


Science | 2011

Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling

Yonghao Yu; Sang-Oh Yoon; George Poulogiannis; Qian Yang; Xiaoju Max Ma; Judit Villén; Neil Kubica; Gregory R. Hoffman; Lewis C. Cantley; Steven P. Gygi; John Blenis

A search for substrates of a growth-promoting kinase revealed a regulatory feedback loop involved in tumor suppression. The evolutionarily conserved serine-threonine kinase mammalian target of rapamycin (mTOR) plays a critical role in regulating many pathophysiological processes. Functional characterization of the mTOR signaling pathways, however, has been hampered by the paucity of known substrates. We used large-scale quantitative phosphoproteomics experiments to define the signaling networks downstream of mTORC1 and mTORC2. Characterization of one mTORC1 substrate, the growth factor receptor–bound protein 10 (Grb10), showed that mTORC1-mediated phosphorylation stabilized Grb10, leading to feedback inhibition of the phosphatidylinositol 3-kinase (PI3K) and extracellular signal–regulated, mitogen-activated protein kinase (ERK-MAPK) pathways. Grb10 expression is frequently down-regulated in various cancers, and loss of Grb10 and loss of the well-established tumor suppressor phosphatase PTEN appear to be mutually exclusive events, suggesting that Grb10 might be a tumor suppressor regulated by mTORC1.


Cell | 2000

Structure of the Rho Family GTP-Binding Protein Cdc42 in Complex with the Multifunctional Regulator RhoGDI

Gregory R. Hoffman; Nicolas Nassar; Richard A. Cerione

The RhoGDI proteins serve as key multifunctional regulators of Rho family GTP-binding proteins. The 2.6 A X-ray crystallographic structure of the Cdc42/RhoGDI complex reveals two important sites of interaction between GDI and Cdc42. First, the amino-terminal regulatory arm of the GDI binds to the switch I and II domains of Cdc42 leading to the inhibition of both GDP dissociation and GTP hydrolysis. Second, the geranylgeranyl moiety of Cdc42 inserts into a hydrophobic pocket within the immunoglobulin-like domain of the GDI molecule leading to membrane release. The structural data demonstrate how GDIs serve as negative regulators of small GTP-binding proteins and how the isoprenoid moiety is utilized in this critical regulatory interaction.


Nature Structural & Molecular Biology | 1998

Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP.

Nicolas Nassar; Gregory R. Hoffman; Danny Manor; Jon Clardy; Richard A. Cerione

The Rho-related small GTP-binding protein Cdc42 has a low intrinsic GTPase activity that is significantly enhanced by its specific GTPase-activating protein, Cdc42GAP. In this report, we present the tertiary structure for the aluminum fluoride-promoted complex between Cdc42 and a catalytically active domain of Cdc42GAP as well as the complex between Cdc42 and the catalytically compromised Cdc42GAP(R305A) mutant. These structures, which mimic the transition state for the GTP hydrolytic reaction, show the presence of an AlF3 molecule, as was seen for the corresponding Ras–p120RasGAP complex, but in contrast to what has been reported for the Rho–Cdc42GAP complex or for heterotrimeric G protein α subunits, where AlF4 – was observed. The Cdc42GAP stabilizes both the switch I and switch II domains of Cdc42 and contributes a highly conserved arginine (Arg 305) to the active site. Comparison of the structures for the wild type and mutant Cdc42GAP complexes provides important insights into the GAP-catalyzed GTP hydrolytic reaction.


FEBS Letters | 2002

Signaling to the Rho GTPases: networking with the DH domain

Gregory R. Hoffman; Richard A. Cerione

The Dbl homology (DH) domain was first identified in the Dbl oncogene product as the limit region required for mediating guanine nucleotide exchange on the Rho family GTPase Cdc42. Since the initial biochemical characterization of the DH domain, this conserved motif has been identified in a large family of proteins. In each case, a pleckstrin homology (PH) domain immediately follows the DH domain and this tandem DH–PH module is the signature motif of the Dbl family of guanine nucleotide exchange factors (GEFs). Recent structural studies have provided significant insight into the molecular basis of guanine nucleotide exchange by Dbl family GEFs, opening the door for understanding the specificity of the DH/GTPase interaction as well as providing a starting point for understanding how the exchange activity of these proteins is modulated to achieve specific biological outcomes in the cell.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers

Gregory R. Hoffman; Rami Rahal; Frank P. Buxton; Kay Xiang; Gregory McAllister; Elizabeth Frias; Linda Bagdasarian; Janina Huber; Alicia Lindeman; Dongshu Chen; Rodrigo Romero; Nadire Ramadan; Tanushree Phadke; Kristy Haas; Mariela Jaskelioff; Boris G. Wilson; Matthew John Meyer; Veronica Saenz-Vash; Huili Zhai; Vic E. Myer; Jeffery A. Porter; Nicholas Keen; Margaret E. McLaughlin; Craig Mickanin; Charles W. M. Roberts; Frank Stegmeier; Zainab Jagani

Significance Mammalian SWI/SNF (mSWI/SNF) alterations are highly prevalent, now estimated to occur in 20% of cancers. The inactivating nature of mSWI/SNF mutations presents a challenge for devising strategies to target these epigenetic lesions. By performing a comprehensive pooled shRNA screen of the epigenome using a unique deep coverage design shRNA (DECODER) library across a large cancer cell line panel, we identified that BRG1/SMARCA4 mutant cancer cells are highly sensitive to BRM/SMARCA2 depletion. Our study provides important mechanistic insight into the BRM/BRG1 synthetic lethal relationship, shows this finding translates in vivo, and highlights BRM as a promising therapeutic target for the treatment BRG1-mutant cancers. Defects in epigenetic regulation play a fundamental role in the development of cancer, and epigenetic regulators have recently emerged as promising therapeutic candidates. We therefore set out to systematically interrogate epigenetic cancer dependencies by screening an epigenome-focused deep-coverage design shRNA (DECODER) library across 58 cancer cell lines. This screen identified BRM/SMARCA2, a DNA-dependent ATPase of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex, as being essential for the growth of tumor cells that harbor loss of function mutations in BRG1/SMARCA4. Depletion of BRM in BRG1-deficient cancer cells leads to a cell cycle arrest, induction of senescence, and increased levels of global H3K9me3. We further demonstrate the selective dependency of BRG1-mutant tumors on BRM in vivo. Genetic alterations of the mSWI/SNF chromatin remodeling complexes are the most frequent among chromatin regulators in cancers, with BRG1/SMARCA4 mutations occurring in ∼10–15% of lung adenocarcinomas. Our findings position BRM as an attractive therapeutic target for BRG1 mutated cancers. Because BRG1 and BRM function as mutually exclusive catalytic subunits of the mSWI/SNF complex, we propose that such synthetic lethality may be explained by paralog insufficiency, in which loss of one family member unveils critical dependence on paralogous subunits. This concept of “cancer-selective paralog dependency” may provide a more general strategy for targeting other tumor suppressor lesions/complexes with paralogous subunits.


Molecular Cell | 2013

Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex.

Sang Gyun Kim; Gregory R. Hoffman; George Poulogiannis; Gwen R. Buel; Young Jin Jang; Ki Won Lee; Bo Yeon Kim; Raymond L. Erikson; Lewis C. Cantley; Andrew Y. Choo; John Blenis

The metabolism of glucose and glutamine, primary carbon sources utilized by mitochondria to generate energy and macromolecules for cell growth, is directly regulated by mTORC1. We show that glucose and glutamine, by supplying carbons to the TCA cycle to produce ATP, positively feed back to mTORC1 through an AMPK-, TSC1/2-, and Rag-independent mechanism by regulating mTORC1 assembly and its lysosomal localization. We discovered that the ATP-dependent TTT-RUVBL1/2 complex was disassembled and repressed by energy depletion, resulting in its decreased interaction with mTOR. The TTT-RUVBL complex was necessary for the interaction between mTORC1 and Rag and formation of mTORC1 obligate dimers. In cancer tissues, TTT-RUVBL complex mRNAs were elevated and positively correlated with transcripts encoding proteins of anabolic metabolism and mitochondrial function-all mTORC1-regulated processes. Thus, the TTT-RUVBL1/2 complex responds to the cells metabolic state, directly regulating the functional assembly of mTORC1 and indirectly controlling the nutrient signal from Rags to mTORC1.


Science | 2016

Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5.

Konstantinos Mavrakis; E. Robert McDonald; Michael R. Schlabach; Eric Billy; Gregory R. Hoffman; Antoine deWeck; David A. Ruddy; Kavitha Venkatesan; Jianjun Yu; Gregg McAllister; Mark Stump; Rosalie deBeaumont; Samuel Ho; Yingzi Yue; Yue Liu; Yan Yan-Neale; Guizhi Yang; Fallon Lin; Hong Yin; Hui Gao; D. Randal Kipp; Songping Zhao; Joshua T. McNamara; Elizabeth R. Sprague; Bing Zheng; Ying Lin; Young Shin Cho; Justin Gu; Kenneth Crawford; David N. Ciccone

Tumors put in a vulnerable position Cancer cells often display alterations in metabolism that help fuel their growth. Such metabolic “rewiring” may also work against the cancer cells, however, by creating new vulnerabilities that can be exploited therapeutically. A variety of human tumors show changes in methionine metabolism caused by loss of the gene coding for 5-methylthioadenosine phosphorylase (MTAP). Mavrakis et al. and Kryukov et al. found that the loss of MTAP renders cancer cell lines sensitive to growth inhibition by compounds that suppress the activity of a specific arginine methyltransferase called PRMT5. Conceivably, drugs that inhibit PRMT5 activity could be developed into a tailored therapy for MTAP-deficient tumors. Science, this issue pp. 1208 and 1214 Tumors cope with a genomic change by rewiring their metabolism, but this makes them more susceptible to certain drugs. 5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA–mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP–deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy

Christina H. Eng; Zuncai Wang; Diane Tkach; Lourdes Toral-Barza; Savuth Ugwonali; Shanming Liu; Stephanie Fitzgerald; Elizabeth George; Elizabeth Frias; Nadire R. Cochran; Rowena De Jesus; Gregory McAllister; Gregory R. Hoffman; Kevin Bray; Luanna Lemon; Judy Lucas; Valeria R. Fantin; Robert T. Abraham; Leon O. Murphy; Beat Nyfeler

Significance Kirsten rat sarcoma (KRAS) mutant tumors are believed to depend on autophagy for growth and survival. This study details the unexpected finding that autophagy-related 7, an enzyme essential for macroautophagy, can be deleted in several KRAS-driven cancer lines without affecting growth in vitro or in vivo. These data indicate that KRAS mutation status does not predict cell-autonomous addiction to autophagy. Furthermore, this report addresses a long-standing question regarding the mechanism of chloroquine, a lysosomotropic agent often used to interrogate effects of autophagy inhibition. Although chloroquine is antiproliferative and synergizes with targeted anticancer drugs, these effects are independent of macroautophagy. Future studies are needed to identify appropriate genetic stratification parameters to predict efficacy toward chloroquine and to characterize such agents further as anticancer combination partners. Macroautophagy is a key stress-response pathway that can suppress or promote tumorigenesis depending on the cellular context. Notably, Kirsten rat sarcoma (KRAS)-driven tumors have been reported to rely on macroautophagy for growth and survival, suggesting a potential therapeutic approach of using autophagy inhibitors based on genetic stratification. In this study, we evaluated whether KRAS mutation status can predict the efficacy to macroautophagy inhibition. By profiling 47 cell lines with pharmacological and genetic loss-of-function tools, we were unable to confirm that KRAS-driven tumor lines require macroautophagy for growth. Deletion of autophagy-related 7 (ATG7) by genome editing completely blocked macroautophagy in several tumor lines with oncogenic mutations in KRAS but did not inhibit cell proliferation in vitro or tumorigenesis in vivo. Furthermore, ATG7 knockout did not sensitize cells to irradiation or to several anticancer agents tested. Interestingly, ATG7-deficient and -proficient cells were equally sensitive to the antiproliferative effect of chloroquine, a lysosomotropic agent often used as a pharmacological tool to evaluate the response to macroautophagy inhibition. Moreover, both cell types manifested synergistic growth inhibition when treated with chloroquine plus the tyrosine kinase inhibitors erlotinib or sunitinib, suggesting that the antiproliferative effects of chloroquine are independent of its suppressive actions on autophagy.


Nature Medicine | 2018

p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells

Robert J. Ihry; Kathleen A. Worringer; Max R. Salick; Elizabeth Frias; Daniel Ho; Kraig Theriault; Sravya Kommineni; Julie Chen; Marie Sondey; Chaoyang Ye; Ranjit Randhawa; Tripti Kulkarni; Zinger Yang; Gregory McAllister; Carsten Russ; John S. Reece-Hoyes; William Forrester; Gregory R. Hoffman; Ricardo E. Dolmetsch; Ajamete Kaykas

CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells1–3. Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells3–13. Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction3. The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations14, cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.CRISPR–Cas9-induced DNA damage triggers p53 to limit the efficiency of gene editing in human pluripotent cells.


eLife | 2016

Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62

Rowena DeJesus; Francesca Moretti; Gregory McAllister; Zuncai Wang; Phil Bergman; Shanming Liu; Elizabeth Frias; John Alford; John S. Reece-Hoyes; Alicia Lindeman; Jennifer Kelliher; Carsten Russ; Judith Knehr; Walter Carbone; Martin Beibel; Guglielmo Roma; Aylwin Ng; John A. Tallarico; Jeffery A. Porter; Ramnik J. Xavier; Craig Mickanin; Leon O. Murphy; Gregory R. Hoffman; Beat Nyfeler

SQSTM1 is an adaptor protein that integrates multiple cellular signaling pathways and whose expression is tightly regulated at the transcriptional and post-translational level. Here, we describe a forward genetic screening paradigm exploiting CRISPR-mediated genome editing coupled to a cell selection step by FACS to identify regulators of SQSTM1. Through systematic comparison of pooled libraries, we show that CRISPR is superior to RNAi in identifying known SQSTM1 modulators. A genome-wide CRISPR screen exposed MTOR signalling and the entire macroautophagy machinery as key regulators of SQSTM1 and identified several novel modulators including HNRNPM, SLC39A14, SRRD, PGK1 and the ufmylation cascade. We show that ufmylation regulates SQSTM1 by eliciting a cell type-specific ER stress response which induces SQSTM1 expression and results in its accumulation in the cytosol. This study validates pooled CRISPR screening as a powerful method to map the repertoire of cellular pathways that regulate the fate of an individual target protein. DOI: http://dx.doi.org/10.7554/eLife.17290.001

Collaboration


Dive into the Gregory R. Hoffman's collaboration.

Researchain Logo
Decentralizing Knowledge