Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beat Nyfeler is active.

Publication


Featured researches published by Beat Nyfeler.


Cell | 2009

Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy

Paul Leslie Nicklin; Philip Bergman; Bailin Zhang; Ellen Triantafellow; Henry Wang; Beat Nyfeler; Haidi Yang; Marc Hild; Charles Kung; Christopher J. Wilson; Vic E. Myer; Jeffrey P. MacKeigan; Jeffrey A. Porter; Y. Karen Wang; Lewis C. Cantley; Peter Finan; Leon O. Murphy

Amino acids are required for activation of the mammalian target of rapamycin (mTOR) kinase which regulates protein translation, cell growth, and autophagy. Cell surface transporters that allow amino acids to enter the cell and signal to mTOR are unknown. We show that cellular uptake of L-glutamine and its subsequent rapid efflux in the presence of essential amino acids (EAA) is the rate-limiting step that activates mTOR. L-glutamine uptake is regulated by SLC1A5 and loss of SLC1A5 function inhibits cell growth and activates autophagy. The molecular basis for L-glutamine sensitivity is due to SLC7A5/SLC3A2, a bidirectional transporter that regulates the simultaneous efflux of L-glutamine out of cells and transport of L-leucine/EAA into cells. Certain tumor cell lines with high basal cellular levels of L-glutamine bypass the need for L-glutamine uptake and are primed for mTOR activation. Thus, L-glutamine flux regulates mTOR, translation and autophagy to coordinate cell growth and proliferation.


Nature Cell Biology | 2014

Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo

William E. Dowdle; Beat Nyfeler; Jane Nagel; Robert Elling; Shanming Liu; Ellen Triantafellow; Suchithra Menon; Zuncai Wang; Ayako Honda; Gwynn Pardee; John Cantwell; Catherine Luu; Ivan Cornella-Taracido; Edmund Harrington; Peter Fekkes; Hong Lei; Qing Fang; Mary Ellen Digan; Debra Burdick; Andrew F. Powers; Stephen B. Helliwell; Simon D’Aquin; Julie Bastien; Henry Wang; Dmitri Wiederschain; Jenny Kuerth; Philip Bergman; David Schwalb; Jason R. Thomas; Savuth Ugwonali

Cells rely on autophagy to clear misfolded proteins and damaged organelles to maintain cellular homeostasis. In this study we use the new autophagy inhibitor PIK-III to screen for autophagy substrates. PIK-III is a selective inhibitor of VPS34 that binds a unique hydrophobic pocket not present in related kinases such as PI(3)Kα. PIK-III acutely inhibits autophagy and de novo lipidation of LC3, and leads to the stabilization of autophagy substrates. By performing ubiquitin-affinity proteomics on PIK-III-treated cells we identified substrates including NCOA4, which accumulates in ATG7-deficient cells and co-localizes with autolysosomes. NCOA4 directly binds ferritin heavy chain-1 (FTH1) to target the iron-binding ferritin complex with a relative molecular mass of 450,000 to autolysosomes following starvation or iron depletion. Interestingly, Ncoa4−/− mice exhibit a profound accumulation of iron in splenic macrophages, which are critical for the reutilization of iron from engulfed red blood cells. Taken together, the results of this study provide a new mechanism for selective autophagy of ferritin and reveal a previously unappreciated role for autophagy and NCOA4 in the control of iron homeostasis in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo

Eduard Stefan; S. Aquin; N. Berger; Christian R. Landry; Beat Nyfeler; Michel Bouvier; Stephen W. Michnick

The G protein-coupled receptor (GPCR) superfamily represents the most important class of pharmaceutical targets. Therefore, the characterization of receptor cascades and their ligands is a prerequisite to discovering novel drugs. Quantification of agonist-induced second messengers and downstream-coupled kinase activities is central to characterization of GPCRs or other pathways that converge on GPCR-mediated signaling. Furthermore, there is a need for simple, cell-based assays that would report on direct or indirect actions on GPCR-mediated effectors of signaling. More generally, there is a demand for sensitive assays to quantify alterations of protein complexes in vivo. We describe the development of a Renilla luciferase (Rluc)-based protein fragment complementation assay (PCA) that was designed specifically to investigate dynamic protein complexes. We demonstrate these features for GPCR-induced disassembly of protein kinase A (PKA) regulatory and catalytic subunits, a key effector of GPCR signaling. Taken together, our observations show that the PCA allows for direct and accurate measurements of live changes of absolute values of protein complex assembly and disassembly as well as cellular imaging and dynamic localization of protein complexes. Moreover, the Rluc-PCA has a sufficiently high signal-to-background ratio to identify endogenously expressed Gαs protein-coupled receptors. We provide pharmacological evidence that the phosphodiesterase-4 family selectively down-regulates constitutive β-2 adrenergic- but not vasopressin-2 receptor-mediated PKA activities. Our results show that the sensitivity of the Rluc-PCA simplifies the recording of pharmacological profiles of GPCR-based candidate drugs and could be extended to high-throughput screens to identify novel direct modulators of PKA or upstream components of GPCR signaling cascades.


Journal of Biological Chemistry | 2008

Molecular Basis of Sugar Recognition by the Human L-type Lectins ERGIC-53, VIPL, and VIP36

Yukiko Kamiya; Daiki Kamiya; Kazuo Yamamoto; Beat Nyfeler; Hans-Peter Hauri; Koichi Kato

ERGIC-53, VIPL, and VIP36 are related type 1 membrane proteins of the mammalian early secretory pathway. They are classified as L-type lectins because of their luminal carbohydrate recognition domain, which exhibits homology to leguminous lectins. These L-type lectins have different intracellular distributions and dynamics in the endoplasmic reticulum-Golgi system of the secretory pathway and interact with N-glycans of glycoproteins in a Ca2+-dependent manner, suggesting a role in glycoprotein sorting and trafficking. To understand the function of these lectins, knowledge of their carbohydrate specificity is crucial but only available for VIP36 (Kamiya, Y., Yamaguchi, Y., Takahashi, N., Arata, Y., Kasai, K. I., Ihara, Y., Matsuo, I., Ito, Y., Yamamoto, K., and Kato, K. (2005) J. Biol. Chem. 280, 37178–37182). Here we provide a comprehensive and quantitative analysis of sugar recognition of the carbohydrate recognition domains of ERGIC-53 and VIPL in comparison with VIP36 using a pyridylaminated sugar library in conjunction with frontal affinity chromatography. Frontal affinity chromatography revealed selective interaction of VIPL and VIP36 with the deglucosylated trimannose in the D1 branch of high-mannose-type oligosaccharides but with different pH dependence. ERGIC-53 bound high-mannose-type oligosaccharides with low affinity and broad specificity, not discriminating between monoglucosylated and deglucosylated high-mannosetype oligosaccharides. Based on the sugar-binding properties in conjunction with known features of these proteins, we propose a model for the action of the three lectins in glycoprotein guidance and trafficking. Moreover, structure-based mutagenesis revealed that the sugar-binding properties of these L-type lectins can be switched by single amino acid substitutions.


Journal of Cell Biology | 2008

Identification of ERGIC-53 as an intracellular transport receptor of α1-antitrypsin

Beat Nyfeler; Veronika Reiterer; Markus W. Wendeler; Eduard Stefan; Bin Zhang; Stephen W. Michnick; Hans Peter Hauri

Secretory proteins are exported from the endoplasmic reticulum (ER) by bulk flow and/or receptor-mediated transport. Our understanding of this process is limited because of the low number of identified transport receptors and cognate cargo proteins. In mammalian cells, the lectin ER Golgi intermediate compartment 53-kD protein (ERGIC-53) represents the best characterized cargo receptor. It assists ER export of a subset of glycoproteins including coagulation factors V and VIII and cathepsin C and Z. Here, we report a novel screening strategy to identify protein interactions in the lumen of the secretory pathway using a yellow fluorescent protein–based protein fragment complementation assay. By screening a human liver complementary DNA library, we identify α1-antitrypsin (α1-AT) as previously unrecognized cargo of ERGIC-53 and show that cargo capture is carbohydrate- and conformation-dependent. ERGIC-53 knockdown and knockout cells display a specific secretion defect of α1-AT that is corrected by reintroducing ERGIC-53. The results reveal ERGIC-53 to be an intracellular transport receptor of α1-AT and provide direct evidence for active receptor-mediated ER export of a soluble secretory protein in higher eukaryotes.


Molecular and Cellular Biology | 2011

Relieving Autophagy and 4EBP1 from Rapamycin Resistance

Beat Nyfeler; Philip Bergman; Ellen Triantafellow; Christopher J. Wilson; Branko Radetich; Peter Finan; Daniel J. Klionsky; Leon O. Murphy

ABSTRACT The mammalian target of rapamycin complex 1 (mTORC1) is a multiprotein signaling complex regulated by oncogenes and tumor suppressors. Outputs downstream of mTORC1 include ribosomal protein S6 kinase 1 (S6K1), eukaryotic translation initiation factor 4E (eIF4E), and autophagy, and their modulation leads to changes in cell growth, proliferation, and metabolism. Rapamycin, an allosteric mTORC1 inhibitor, does not antagonize equally these outputs, but the reason for this is unknown. Here, we show that the ability of rapamycin to activate autophagy in different cell lines correlates with mTORC1 stability. Rapamycin exposure destabilizes mTORC1, but in cell lines where autophagy is drug insensitive, higher levels of mTOR-bound raptor are detected than in cells where rapamycin stimulates autophagy. Using small interfering RNA (siRNA), we find that knockdown of raptor relieves autophagy and the eIF4E effector pathway from rapamycin resistance. Importantly, nonefficacious concentrations of an ATP-competitive mTOR inhibitor can be combined with rapamycin to synergistically inhibit mTORC1 and activate autophagy but leave mTORC2 signaling intact. These data suggest that partial inhibition of mTORC1 by rapamycin can be overcome using combination strategies and offer a therapeutic avenue to achieve complete and selective inhibition of mTORC1.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy

Christina H. Eng; Zuncai Wang; Diane Tkach; Lourdes Toral-Barza; Savuth Ugwonali; Shanming Liu; Stephanie Fitzgerald; Elizabeth George; Elizabeth Frias; Nadire R. Cochran; Rowena De Jesus; Gregory McAllister; Gregory R. Hoffman; Kevin Bray; Luanna Lemon; Judy Lucas; Valeria R. Fantin; Robert T. Abraham; Leon O. Murphy; Beat Nyfeler

Significance Kirsten rat sarcoma (KRAS) mutant tumors are believed to depend on autophagy for growth and survival. This study details the unexpected finding that autophagy-related 7, an enzyme essential for macroautophagy, can be deleted in several KRAS-driven cancer lines without affecting growth in vitro or in vivo. These data indicate that KRAS mutation status does not predict cell-autonomous addiction to autophagy. Furthermore, this report addresses a long-standing question regarding the mechanism of chloroquine, a lysosomotropic agent often used to interrogate effects of autophagy inhibition. Although chloroquine is antiproliferative and synergizes with targeted anticancer drugs, these effects are independent of macroautophagy. Future studies are needed to identify appropriate genetic stratification parameters to predict efficacy toward chloroquine and to characterize such agents further as anticancer combination partners. Macroautophagy is a key stress-response pathway that can suppress or promote tumorigenesis depending on the cellular context. Notably, Kirsten rat sarcoma (KRAS)-driven tumors have been reported to rely on macroautophagy for growth and survival, suggesting a potential therapeutic approach of using autophagy inhibitors based on genetic stratification. In this study, we evaluated whether KRAS mutation status can predict the efficacy to macroautophagy inhibition. By profiling 47 cell lines with pharmacological and genetic loss-of-function tools, we were unable to confirm that KRAS-driven tumor lines require macroautophagy for growth. Deletion of autophagy-related 7 (ATG7) by genome editing completely blocked macroautophagy in several tumor lines with oncogenic mutations in KRAS but did not inhibit cell proliferation in vitro or tumorigenesis in vivo. Furthermore, ATG7 knockout did not sensitize cells to irradiation or to several anticancer agents tested. Interestingly, ATG7-deficient and -proficient cells were equally sensitive to the antiproliferative effect of chloroquine, a lysosomotropic agent often used as a pharmacological tool to evaluate the response to macroautophagy inhibition. Moreover, both cell types manifested synergistic growth inhibition when treated with chloroquine plus the tyrosine kinase inhibitors erlotinib or sunitinib, suggesting that the antiproliferative effects of chloroquine are independent of its suppressive actions on autophagy.


Traffic | 2006

Cargo Selectivity of the ERGIC-53/MCFD2 Transport Receptor Complex

Beat Nyfeler; Bin Zhang; David Ginsburg; Randal J. Kaufman; Hans Peter Hauri

Exit of soluble secretory proteins from the endoplasmic reticulum (ER) can occur by receptor‐mediated export as exemplified by blood coagulation factors V and VIII. Their efficient secretion requires the membrane lectin ER Golgi intermediate compartment protein‐53 (ERGIC‐53) and its soluble luminal interaction partner multiple coagulation factor deficiency protein 2 (MCFD2), which form a cargo receptor complex in the early secretory pathway. ERGIC‐53 also interacts with the two lysosomal glycoproteins cathepsin Z and cathepsin C. Here, we tested the subunit interdependence and cargo selectivity of ERGIC‐53 and MCFD2 by short interference RNA‐based knockdown. In the absence of ERGIC‐53, MCFD2 was secreted, whereas knocking down MCFD2 had no effect on the localization of ERGIC‐53. Cargo binding properties of the ERGIC‐53/MCFD2 complex were analyzed in vivo using yellow fluorescent protein fragment complementation. We found that MCFD2 is dispensable for the binding of cathepsin Z and cathepsin C to ERGIC‐53. The results indicate that ERGIC‐53 can bind cargo glycoproteins in an MCFD2‐independent fashion and suggest that MCFD2 is a recruitment factor for blood coagulation factors V and VIII.


Biochemical and Biophysical Research Communications | 2003

The cargo receptor ERGIC-53 is a target of the unfolded protein response.

Beat Nyfeler; Oliver Nufer; Toshie Matsui; Kazutoshi Mori; Hans-Peter Hauri

The accumulation of unfolded proteins in the ER triggers a signaling response known as unfolded protein response (UPR). In yeast the UPR affects several hundred genes that encode ER chaperones and proteins operating at later stages of secretion. In mammalian cells the UPR appears to be more limited to chaperones of the ER and genes assumed to be important after cell recovery from ER stress that are not important for secretion. Here, we report that the mRNA of lectin ERGIC-53, a cargo receptor for the transport of glycoproteins from ER to ERGIC, and of its related protein VIP36 is induced by the known inducers of ER stress, tunicamycin and thapsigargin. In parallel, the rate of synthesis of the ERGIC-53 protein was induced by these agents. The response was due to the UPR since it was also triggered by castanospermine, a specific inducer of UPR, and inhibited by genistein. Thapsigargin-induced upregulation of ERGIC-53 could be fully accounted for by the ATF6 pathway of UPR. The results suggest that in mammalian cells the UPR also affects traffic from and beyond the ER.


Traffic | 2010

Role of the Lectin VIP36 in Post‐ER Quality Control of Human α1‐Antitrypsin

Veronika Reiterer; Beat Nyfeler; Hans-Peter Hauri

The leguminous‐type (L‐type) lectin VIP36 localizes to the Golgi apparatus and cycles early in the secretory pathway. In vitro, VIP36 binds high‐mannose glycans with a pH optimum of 6.5, a value similar to the luminal pH of the Golgi apparatus. Although the sugar‐binding properties of VIP36 in vitro have been characterized in detail, the function of VIP36 in the intact cell remains unclear as no convincing glycoprotein cargo has been identified. Here, we used yellow fluorescent protein (YFP) fragment complementation to identify luminal interaction partners of VIP36. By screening a human liver cDNA library, we identified the glycoprotein α1‐antitrypsin (α1‐AT) as a cargo of VIP36. The VIP36/α1‐AT complex localized to Golgi and endoplasmic reticulum (ER). In the living cell, VIP36 bound exclusively to the high‐mannose form of α1‐AT. The binding was increased when complex glycosylation was prevented by kifunensine and abolished when the glycosylation sites of α1‐AT were inactivated by mutagenesis. Silencing VIP36 accelerated α1‐AT transport, arguing against a role of VIP36 in anterograde traffic. The complex formed by VIP36 and α1‐AT in the Golgi recycled back to the ER. The combined data are most consistent with a function of VIP36 in post‐ER quality control of α1‐AT.

Collaboration


Dive into the Beat Nyfeler's collaboration.

Researchain Logo
Decentralizing Knowledge