Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory S. Harms is active.

Publication


Featured researches published by Gregory S. Harms.


Angewandte Chemie | 2011

Upconverting nanoparticles for nanoscale thermometry.

Lorenz H. Fischer; Gregory S. Harms; Otto S. Wolfbeis

Upconverting materials are capable of absorbing near-infrared light and converting it into short-wavelength luminescence. The efficiency of this remarkable effect is highly temperature dependent and thus can be used for temperature determination (thermometry) on a nanometer scale. All the upconverting materials discovered so far display several (mainly two) narrow emission bands, each of which has its own temperature dependence. The ratio of the intensity of two of these bands provides a referenced signal for optical sensing of temperature, for example inside cells.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3

Fatih Demir; Claudia Horntrich; Jörg O. Blachutzik; Sönke Scherzer; Yvonne Reinders; Sylwia Kierszniowska; Waltraud X. Schulze; Gregory S. Harms; Rainer Hedrich; Dietmar Geiger; Ines Kreuzer

The phytohormone abscisic acid (ABA) plays a key role in the plant response to drought stress. Hence, ABA-dependent gene transcription and ion transport is regulated by a variety of protein kinases and phosphatases. However, the nature of the membrane-delimited ABA signal transduction steps remains largely unknown. To gain insight into plasma membrane-bound ABA signaling, we identified sterol-dependent proteins associated with detergent resistant membranes from Arabidopsis thaliana mesophyll cells. Among those, we detected the central ABA signaling phosphatase ABI1 (abscisic-acid insensitive 1) and the calcium-dependent protein kinase 21 (CPK21). Using fluorescence microscopy, we found these proteins to localize in membrane nanodomains, as observed by colocalization with the nanodomain marker remorin Arabidopsis thaliana remorin 1.3 (AtRem 1.3). After transient coexpression, CPK21 interacted with SLAH3 [slow anion channel 1 (SLAC1) homolog 3] and activated this anion channel. Upon CPK21 stimulation, SLAH3 exhibited the hallmark properties of S-type anion channels. Coexpression of SLAH3/CPK21 with ABI1, however, prevented proper nanodomain localization of the SLAH3/CPK21 protein complex, and as a result anion channel activation failed. FRET studies revealed enhanced interaction of SLAH3 and CPK21 within the plasma membrane in response to ABA and thus confirmed our initial observations. Interestingly, the ABA-induced SLAH3/CPK21 interaction was modulated by ABI1 and the ABA receptor RCAR1/PYL9 [regulatory components of ABA receptor 1/PYR1 (pyrabactin resistance 1)-like protein 9]. We therefore propose that ABA signaling via inhibition of ABI1 modulates the apparent association of a signaling and transport complex within membrane domains that is necessary for phosphorylation and activation of the S-type anion channel SLAH3 by CPK21.


The EMBO Journal | 2012

IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation

Tripat Kaur Oberoi; Taner Dogan; Jennifer C. Hocking; Rolf-Peter Scholz; Juliane Mooz; Carrie L Anderson; Christiaan Karreman; Dagmar Meyer zu Heringdorf; Gudula Schmidt; Mika Ruonala; Kazuhiko Namikawa; Gregory S. Harms; Alejandro Carpy; Boris Macek; Reinhard W. Köster; Krishnaraj Rajalingam

Inhibitors of apoptosis proteins (IAPs) are a highly conserved class of multifunctional proteins. Rac1 is a well‐studied Rho GTPase that controls numerous basic cellular processes. While the regulation of nucleotide binding to Rac1 is well understood, the molecular mechanisms controlling Rac1 degradation are not known. Here, we demonstrate X‐linked IAP (XIAP) and cellular IAP1 (c‐IAP1) directly bind to Rac1 in a nucleotide‐independent manner to promote its polyubiquitination at Lys147 and proteasomal degradation. These IAPs are also required for degradation of Rac1 upon CNF1 toxin treatment or RhoGDI depletion. Consistently, downregulation of XIAP or c‐IAP1 by various strategies led to an increase in Rac1 protein levels in primary and tumour cells, leading to an elongated morphology and enhanced cell migration. Further, XIAP counteracts Rac1‐dependent cellular polarization in the developing zebrafish hindbrain and promotes the delamination of neurons from the normal tissue architecture. These observations unveil an evolutionarily conserved role of IAPs in controlling Rac1 stability thereby regulating the plasticity of cell migration and morphogenesis.


Nature Cell Biology | 2008

X-linked and cellular IAPs modulate the stability of C-RAF kinase and cell motility

Taner Dogan; Gregory S. Harms; Mirko Hekman; Christiaan Karreman; Tripat Kaur Oberoi; Emad S. Alnemri; Ulf R. Rapp; Krishnaraj Rajalingam

Inhibitor of apoptosis proteins (IAP) are evolutionarily conserved anti-apoptotic regulators. C-RAF protein kinase is a direct RAS effector protein, which initiates the classical mitogen-activated protein kinase (MAPK) cascade. This signalling cascade mediates diverse biological functions, such as cell growth, proliferation, migration, differentiation and survival. Here we demonstrate that XIAP and c-IAPs bind directly to C-RAF kinase and that siRNA-mediated silencing of XIAP and c-IAPs leads to stabilization of C-RAF in human cells. XIAP binds strongly to C-RAF and promotes the ubiquitylation of C-RAF in vivo through the Hsp90-mediated quality control system, independently of its E3 ligase activity. In addition, XIAP or c-IAP-1/2 knockdown cells showed enhanced cell migration in a C-RAF-dependent manner. XIAP promotes binding of CHIP (carboxy terminal Hsc70-interacting protein), a chaperone-associated ubiquitin ligase, to the C-RAF–Hsp90 complex in vivo. Interfering with CHIP expression resulted in stabilization of C-RAF and enhanced cell migration, as observed in XIAP knockdown cells. Our data show an unexpected role of XIAP and c-IAPs in the turnover of C-RAF protein, thereby modulating the MAPK signalling pathway and cell migration.


Biophysical Journal | 2011

STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution.

Mike Friedrich; Qiang Gan; Vladimir Ermolayev; Gregory S. Harms

We demonstrate the first, to our knowledge, integration of stimulated emission depletion (STED) with selective plane illumination microscopy (SPIM). Using this method, we were able to obtain up to 60% improvements in axial resolution with lateral resolution enhancements in control samples and zebrafish embryos. The integrated STED-SPIM method combines the advantages of SPIM with the resolution enhancement of STED, and thus provides a method for fast, high-resolution imaging with >100 μm deep penetration into biological tissue.


Current protocols in pharmacology | 2007

Biological Second and Third Harmonic Generation Microscopy

Peter Friedl; Katarina Wolf; Gregory S. Harms; Ulrich H. von Andrian

Multiphoton microscopy has become a standard method for noninvasive imaging of thick specimens with subcellular resolution. Higher harmonic generation microscopy (HHGM), based on nonlinear multiphoton excitation, is a contrast mechanism for the structural and molecular imaging of native samples in cell culture and in fixed and live tissues, for both, three‐dimensional and four‐dimensional reconstructions. HHGM comprises second and third harmonic generation (SHG, THG) of ordered molecules, can be obtained without exogenous labels, and provides detailed real‐time optical reconstruction of fibrillar collagen, myosin, microtubules, and membrane potential, as well as cell depolarization. This unit presents the principles of SHG and THG and the basic setup of a HHGM system, and summarizes current applications in cell biology. Multimodal multiphoton microscopy using HHGM together with two‐photon excited fluorescence will develop into a key approach to real‐time imaging of cell dynamics in the context of live tissues.


Journal of Clinical Investigation | 2013

Peptide-mediated desmoglein 3 crosslinking prevents pemphigus vulgaris autoantibody-induced skin blistering

Volker Spindler; Vera Rötzer; Carina Dehner; Bettina Kempf; Martin Gliem; Mariya Y. Radeva; Eva Hartlieb; Gregory S. Harms; Enno Schmidt; Jens Waschke

In pemphigus vulgaris, a life-threatening autoimmune skin disease, epidermal blisters are caused by autoantibodies primarily targeting desmosomal cadherins desmoglein 3 (DSG3) and DSG1, leading to loss of keratinocyte cohesion. Due to limited insights into disease pathogenesis, current therapy relies primarily on nonspecific long-term immunosuppression. Both direct inhibition of DSG transinteraction and altered intracellular signaling by p38 MAPK likely contribute to the loss of cell adhesion. Here, we applied a tandem peptide (TP) consisting of 2 connected peptide sequences targeting the DSG adhesive interface that was capable of blocking autoantibody-mediated direct interference of DSG3 transinteraction, as revealed by atomic force microscopy and optical trapping. Importantly, TP abrogated autoantibody-mediated skin blistering in mice and was effective when applied topically. Mechanistically, TP inhibited both autoantibody-induced p38 MAPK activation and its association with DSG3, abrogated p38 MAPK-induced keratin filament retraction, and promoted desmosomal DSG3 oligomerization. These data indicate that p38 MAPK links autoantibody-mediated inhibition of DSG3 binding to skin blistering. By limiting loss of DSG3 transinteraction, p38 MAPK activation, and keratin filament retraction, which are hallmarks of pemphigus pathogenesis, TP may serve as a promising treatment option.


Nucleic Acids Research | 2008

C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity

Markus Sauer; Anne Catherine Bretz; Rasa Beinoraviciute-Kellner; Michaela Beitzinger; Christof Burek; Andreas Rosenwald; Gregory S. Harms; Thorsten Stiewe

The p53 family is known as a family of transcription factors with functions in tumor suppression and development. Whereas the central DNA-binding domain is highly conserved among the three family members p53, p63 and p73, the C-terminal domains (CTDs) are diverse and subject to alternative splicing and post-translational modification. Here we demonstrate that the CTDs strongly influence DNA binding and transcriptional activity: while p53 and the p73 isoform p73γ have basic CTDs and form weak sequence-specific protein–DNA complexes, the major p73 isoforms have neutral CTDs and bind DNA strongly. A basic CTD has been previously shown to enable sliding along the DNA backbone and to facilitate the search for binding sites in the complex genome. Our experiments, however, reveal that a basic CTD also reduces protein–DNA complex stability, intranuclear mobility, promoter occupancy in vivo, target gene activation and induction of cell cycle arrest or apoptosis. A basic CTD therefore provides both positive and negative regulatory functions presumably to enable rapid switching of protein activity in response to stress. The different DNA-binding characteristics of the p53 family members could therefore reflect their predominant role in the cellular stress response (p53) or developmental processes (p73).


Journal of Fluorescence | 2005

Improved Fluorescent Proteins for Single-Molecule Research in Molecular Tracking and Co-Localization

Ralf Steinmeyer; Andrey Noskov; Cornelius Krasel; Isabell Weber; Christian Dees; Gregory S. Harms

Three promising variants of autofluorescent proteins have been analyzed photophysically for their proposed use in single-molecule microscopy studies in living cells to compare their superiority to other fluorescent proteins previously reported regarding the number of photons emitted. The first variant under investigation the F46L mutant of eYFP has a 10% greater photon emission rate and > 50% slower photobleaching rate on average than the standard eYFP fluorophore. The monomeric red fluorescent protein (mRFP) has a fivefold lower photon emission rate, likely due to the monomeric content, and also a tenfold faster photobleaching rate than the DsRed fluorescent protein. In contrast, the previously reported eqfp611 has a 50% lower emission rate yet photobleaches more than a factor 2 slowly. We conclude that the F46L YFP and the eqfp611 are superior new options for single molecule imaging and tracking studies in living cells. Studies were also performed on the effects of forced quenching of multiple fluorescent proteins in sub-micrometer regions that would show the effects of dimerization at low concentration levels of fluorescent proteins and also indicate corrections to stoichiometry patterns with fluorescent proteins previously in print. We also introduce properties at the single molecule level of new FRET pairs with combinations of fluorescent proteins and artificial fluorophores.


American Journal of Physiology-cell Physiology | 2010

Actin reorganization contributes to loss of cell adhesion in pemphigus vulgaris

Martin Gliem; Wolfgang-Moritz Heupel; Volker Spindler; Gregory S. Harms; Jens Waschke

In the human autoimmune blistering skin disease pemphigus vulgaris autoantibodies (PV-IgG), which are mainly directed against keratinocyte cell adhesion molecules desmoglein (Dsg) 3 and Dsg1, cause keratinocyte cell dissociation (acantholysis). Recent studies reported that loss of keratinocyte cell adhesion was accompanied by profound alterations of the actin cytoskeleton. Nevertheless, the relevance of actin reorganization in this process is unclear at present. In this study, we provide evidence for an important role of actin reorganization in pemphigus pathogenesis. In parallel to loss of cell adhesion and fragmentation of Dsg3 staining along cell borders, PV-IgG treatment resulted in striking changes in actin cytoskeleton organization. Moreover, in experiments using fluorescence recovery after photobleaching (FRAP), PV-IgG were detected to interfere with actin dynamics. Therefore, we investigated whether pharmacological manipulation of actin polymerization modulates pathogenic effects of PV-IgG. Pharmacological stabilization of actin filaments via jasplakinolide significantly blocked cell dissociation and Dsg3 fragmentation, whereas cytochalasin D-induced actin depolymerization strongly enhanced pathogenic effects of PV-IgG. To substantiate these findings, we studied whether the protective effects of Rho GTPases, which are potent regulators of the actin cytoskeleton and were shown to be involved in pemphigus pathogenesis, were dependent on modulation of actin dynamics. Cytotoxic necrotizing factor-1 (CNF-1)-mediated activation of Rho-GTPases enhanced the cortical junction-associated actin belt and blunted PV-IgG-induced cell dissociation. However, when actin polymerization was blocked under these conditions via addition of latrunculin B, the protective effects of CNF-1 were abrogated. Taken together, these experiments indicate that reorganization of cortical actin filaments is a critical step in PV-IgG-induced keratinocyte dissociation.

Collaboration


Dive into the Gregory S. Harms's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ines Kreuzer

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge