Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ines Kreuzer is active.

Publication


Featured researches published by Ines Kreuzer.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3

Fatih Demir; Claudia Horntrich; Jörg O. Blachutzik; Sönke Scherzer; Yvonne Reinders; Sylwia Kierszniowska; Waltraud X. Schulze; Gregory S. Harms; Rainer Hedrich; Dietmar Geiger; Ines Kreuzer

The phytohormone abscisic acid (ABA) plays a key role in the plant response to drought stress. Hence, ABA-dependent gene transcription and ion transport is regulated by a variety of protein kinases and phosphatases. However, the nature of the membrane-delimited ABA signal transduction steps remains largely unknown. To gain insight into plasma membrane-bound ABA signaling, we identified sterol-dependent proteins associated with detergent resistant membranes from Arabidopsis thaliana mesophyll cells. Among those, we detected the central ABA signaling phosphatase ABI1 (abscisic-acid insensitive 1) and the calcium-dependent protein kinase 21 (CPK21). Using fluorescence microscopy, we found these proteins to localize in membrane nanodomains, as observed by colocalization with the nanodomain marker remorin Arabidopsis thaliana remorin 1.3 (AtRem 1.3). After transient coexpression, CPK21 interacted with SLAH3 [slow anion channel 1 (SLAC1) homolog 3] and activated this anion channel. Upon CPK21 stimulation, SLAH3 exhibited the hallmark properties of S-type anion channels. Coexpression of SLAH3/CPK21 with ABI1, however, prevented proper nanodomain localization of the SLAH3/CPK21 protein complex, and as a result anion channel activation failed. FRET studies revealed enhanced interaction of SLAH3 and CPK21 within the plasma membrane in response to ABA and thus confirmed our initial observations. Interestingly, the ABA-induced SLAH3/CPK21 interaction was modulated by ABI1 and the ABA receptor RCAR1/PYL9 [regulatory components of ABA receptor 1/PYR1 (pyrabactin resistance 1)-like protein 9]. We therefore propose that ABA signaling via inhibition of ABI1 modulates the apparent association of a signaling and transport complex within membrane domains that is necessary for phosphorylation and activation of the S-type anion channel SLAH3 by CPK21.


Current Biology | 2015

Stomatal Guard Cells Co-opted an Ancient ABA-Dependent Desiccation Survival System to Regulate Stomatal Closure

Christof Lind; Ingo Dreyer; Enrique J. López-Sanjurjo; Katharina von Meyer; Kimitsune Ishizaki; Takayuki Kohchi; Daniel Lang; Yang Zhao; Ines Kreuzer; Khaled A. S. Al-Rasheid; Hans Ronne; Ralf Reski; Jian-Kang Zhu; Dietmar Geiger; Rainer Hedrich

During the transition from water to land, plants had to cope with the loss of water through transpiration, the inevitable result of photosynthetic CO2 fixation on land [1, 2]. Control of transpiration became possible through the development of a new cell type: guard cells, which form stomata. In vascular plants, stomatal regulation is mediated by the stress hormone ABA, which triggers the opening of the SnR kinase OST1-activated anion channel SLAC1 [3, 4]. To understand the evolution of this regulatory circuit, we cloned both ABA-signaling elements, SLAC1 and OST1, from a charophyte alga, a liverwort, and a moss, and functionally analyzed the channel-kinase interactions. We were able to show that the emergence of stomata in the last common ancestor of mosses and vascular plants coincided with the origin of SLAC1-type channels capable of using the ancient ABA drought signaling kinase OST1 for regulation of stomatal closure.


Current Biology | 2016

The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake

Jennifer Böhm; Sönke Scherzer; Elzbieta Krol; Ines Kreuzer; Katharina von Meyer; Christian Lorey; Thomas D. Mueller; Lana Shabala; Isabel Monte; Roberto Solano; Khaled A. S. Al-Rasheid; Heinz Rennenberg; Sergey Shabala; Erwin Neher; Rainer Hedrich

Summary Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant. Video Abstract


Molecular & Cellular Proteomics | 2012

The Protein Composition of the Digestive Fluid from the Venus Flytrap Sheds Light on Prey Digestion Mechanisms

Waltraud X. Schulze; Kristian W. Sanggaard; Ines Kreuzer; Anders Dahl Knudsen; Felix Bemm; Ida B. Thøgersen; Andrea Bräutigam; Line R. Thomsen; Simon Schliesky; Thomas F. Dyrlund; María Escalante-Pérez; Dirk Becker; Joerg Schultz; Henrik Karring; Andreas P. M. Weber; Peter Højrup; Rainer Hedrich; Jan J. Enghild

The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plants digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plants prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps

Sönke Scherzer; Jennifer Böhm; Elzbieta Krol; Lana Shabala; Ines Kreuzer; Christina Larisch; Felix Bemm; Khaled A. S. Al-Rasheid; Sergey Shabala; Heinz Rennenberg; Erwin Neher; Rainer Hedrich

Significance The Venus flytrap Dionaea muscipula has been in the focus of scientists since Darwin’s time. Carnivorous plants, with their specialized lifestyle, including insect capture, as well as digestion and absorption of prey, developed unique tools to gain scarce nutrients. In this study, we identified the molecular nature of the uptake machinery for prey-derived potassium and the posttranslational regulation. For the first time, to our knowledge, we functionally characterize DmHAK5 here—a KUP/HAK/KT family member as activated by a CBL-CIPK kinase complex. Detailed electrophysiological characterization identified DmHAK5 as a proton-driven, high-affinity potassium transporter with a weak selectivity. Working hand-in-hand with the low-affinity, high-capacity K+-channel DmKT1 activated by the same kinase, the transporters allow the Venus flytrap to take up prey-derived potassium. The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K+ uptake system in the Venus flytrap. In search of K+ transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K+-transporter genes into Xenopus oocytes, however, both putative K+ transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K+ transporter 1 (AKT1), we coexpressed the putative K+ transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K+ uptake. DmKT1 was found to be a K+-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around −120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K+, reducing its concentration from millimolar levels down to trace levels.


Journal of Experimental Botany | 2014

The Venus flytrap attracts insects by the release of volatile organic compounds

Jürgen Kreuzwieser; Ursel Scheerer; Jörg Kruse; Tim Burzlaff; Anne Honsel; Saleh A. Al-Farraj; Plamen Georgiev; Jörg-Peter Schnitzler; Andrea Ghirardo; Ines Kreuzer; Rainer Hedrich; Heinz Rennenberg

Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.


Current Biology | 2013

The Dionaea muscipula Ammonium Channel DmAMT1 Provides NH4+ Uptake Associated with Venus Flytrap’s Prey Digestion

Sönke Scherzer; Elzbieta Krol; Ines Kreuzer; Jörg Kruse; Franziska Karl; Martin von Rüden; María Escalante-Pérez; Thomas Müller; Heinz Rennenberg; Khaled A. S. Al-Rasheid; Erwin Neher; Rainer Hedrich

BACKGROUND Ammonium transporter (AMT/MEP/Rh) superfamily members mediate ammonium uptake and retrieval. This pivotal transport system is conserved among all living organisms. For plants, nitrogen represents a macronutrient available in the soil as ammonium, nitrate, and organic nitrogen compounds. Plants living on extremely nutrient-poor soils have developed a number of adaptation mechanisms, including a carnivorous lifestyle. This study addresses the molecular nature, function, and regulation of prey-derived ammonium uptake in the Venus flytrap, Dionaea muscipula, one of the fastest active carnivores. RESULTS The Dionaea muscipula ammonium transporter DmAMT1 was localized in gland complexes where its expression was upregulated upon secretion. These clusters of cells decorating the inner trap surface are engaged in (1) secretion of an acidic digestive enzyme cocktail and (2) uptake of prey-derived nutrients. Voltage clamp of Xenopus oocytes expressing DmAMT1 and membrane potential recordings with DmAMT1-expressing Dionaea glands were used to monitor and compare electrophysiological properties of DmAMT1 in vitro and in planta. DmAMT1 exhibited the hallmark biophysical properties of a NH4(+)-selective channel. At depolarized membrane potentials (Vm = 0), the Km (3.2 ± 0.3 mM) indicated a low affinity of DmAMT1 for ammonium that increased systematically with negative going voltages. Upon hyperpolarization to, e.g., -200 mV, a Km of 0.14 ± 0.015 mM documents the voltage-dependent shift of DmAMT1 into a NH4(+) transport system of high affinity. CONCLUSIONS We suggest that regulation of glandular DmAMT1 and membrane potential readjustments of the endocrine cells provide for effective adaptation to varying, prey-derived ammonium sources.


Genome Research | 2016

Venus flytrap carnivorous lifestyle builds on herbivore defense strategies

Felix Bemm; Dirk Becker; Christina Larisch; Ines Kreuzer; María Escalante-Pérez; Waltraud X. Schulze; Markus J. Ankenbrand; Anna-Lena Van de Weyer; Elzbieta Krol; Khaled A. S. Al-Rasheid; Axel Mithöfer; Andreas P. M. Weber; Jörg Schultz; Rainer Hedrich

Although the concept of botanical carnivory has been known since Darwins time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.


Plant Methods | 2012

Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues.

Jörg O Blachutzik; Fatih Demir; Ines Kreuzer; Rainer Hedrich; Gregory S. Harms

BackgroundSterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana.ResultsLipid staining protocols for several fluorescent lipid analogues in plants are presented. The most emphasis was placed on successful protocols for the single and dual staining of sphingolipid enriched regions and exclusion of sphingolipid enriched regions on the plasma membrane of Arabidopsis thaliana protoplasts. A secondary focus was placed to ensure that these staining protocols presented still maintain cell viability. Furthermore, the protocols were successfully tested with the spectrally sensitive dye Laurdan.ConclusionAlmost all existing staining procedures of the plasma membrane with fluorescent lipid analogues are specified for animal cells and tissues. In order to develop lipid staining protocols for plants, procedures were established with critical steps for the plasma membrane staining of Arabidopsis leaf tissue and protoplasts. The success of the plasma membrane staining protocols was additionally verified by measurements of lipid dynamics by the fluorescence recovery after photobleaching technique and by the observation of new phenomena such as time dependent lipid polarization events in living protoplasts, for which a putative physiological relevance is suggested.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells

Sönke Scherzer; Lana Shabala; Benjamin Hedrich; Jörg Fromm; Hubert Bauer; Eberhard Munz; Peter M. Jakob; Khaled A. S. Al-Rascheid; Ines Kreuzer; Dirk Becker; Monika Eiblmeier; Heinz Rennenberg; Sergey Shabala; Malcolm J. Bennett; Erwin Neher; Rainer Hedrich

Significance The Venus flytrap has been in the focus of scientists since Darwin’s time. Carnivorous plants, with their specialized lifestyle, including insect capture, as well as digestion and absorption of prey, developed unique tools to gain scarce nutrients. In this study, we describe mechanistic insights into the cascade of events following the capture of insect prey. Action potentials evoked by the struggling prey are translated into touch-inducible hormone signals that promote the formation of secretory vesicles. Different varieties of digestive compounds are released sequentially into the flytrap’s “green stomach” and break down the captured animal. Amperometry provides insight into the kinetics and chemistry of the stimulus-coupled glandular secretion process. The Venus flytrap Dionaea muscipula captures insects and consumes their flesh. Prey contacting touch-sensitive hairs trigger traveling electrical waves. These action potentials (APs) cause rapid closure of the trap and activate secretory functions of glands, which cover its inner surface. Such prey-induced haptoelectric stimulation activates the touch hormone jasmonate (JA) signaling pathway, which initiates secretion of an acidic hydrolase mixture to decompose the victim and acquire the animal nutrients. Although postulated since Darwin’s pioneering studies, these secretory events have not been recorded so far. Using advanced analytical and imaging techniques, such as vibrating ion-selective electrodes, carbon fiber amperometry, and magnetic resonance imaging, we monitored stimulus-coupled glandular secretion into the flytrap. Trigger-hair bending or direct application of JA caused a quantal release of oxidizable material from gland cells monitored as distinct amperometric spikes. Spikes reminiscent of exocytotic events in secretory animal cells progressively increased in frequency, reaching steady state 1 d after stimulation. Our data indicate that trigger-hair mechanical stimulation evokes APs. Gland cells translate APs into touch-inducible JA signaling that promotes the formation of secretory vesicles. Early vesicles loaded with H+ and Cl− fuse with the plasma membrane, hyperacidifying the “green stomach”-like digestive organ, whereas subsequent ones carry hydrolases and nutrient transporters, together with a glutathione redox moiety, which is likely to act as the major detected compound in amperometry. Hence, when glands perceive the haptoelectrical stimulation, secretory vesicles are tailored to be released in a sequence that optimizes digestion of the captured animal.

Collaboration


Dive into the Ines Kreuzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Becker

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Kruse

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge