Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory T. Kitten is active.

Publication


Featured researches published by Gregory T. Kitten.


Hypertension | 2006

Impairment of In Vitro and In Vivo Heart Function in Angiotensin-(1-7) Receptor Mas Knockout Mice

Robson A.S. Santos; Carlos H. Castro; Elisandra Gava; Sérgio V.B. Pinheiro; Alvair P. Almeida; Renata Dutra de Paula; Jader Santos Cruz; Anderson S. Ramos; Kaleizu Teodoro Rosa; M.C. Irigoyen; Michael Bader; Natalia Alenina; Gregory T. Kitten; Anderson J. Ferreira

In this study we investigated the effects of the genetic deletion of the angiotensin (Ang)-(1-7) receptor Mas on heart function. Localization of Mas in the mouse heart was evaluated by binding of rhodamine-labeled Ang-(1-7). Cardiac function was examined using isolated heart preparations. Echocardiography was used to confirm the results obtained with isolated heart studies. To elucidate the possible mechanisms involved in the cardiac phenotype observed in Mas−/− mice, whole-cell calcium currents in cardiomyocytes and the expression of collagen types I, III, and VI and fibronectin were analyzed. Ang-(1-7) binding showed that Mas is localized in cardiomyocytes of the mouse heart. Isolated heart techniques revealed that Mas-deficient mice present a lower systolic tension (average: 1.4±0.09 versus 2.1±0.03 g in Mas+/+ mice), ±dT/dt, and heart rate. A significantly higher coronary vessel resistance was also observed in Mas-deficient mice. Echocardiography revealed that hearts of Mas-deficient mice showed a significantly decreased fractional shortening, posterior wall thickness in systole and left ventricle end-diastolic dimension, and a higher left ventricle end-systolic dimension. A markedly lower global ventricular function, as defined by a higher myocardial performance index, was observed. A higher delayed time to the peak of calcium current was also observed. The changes in cardiac function could be partially explained by a marked change in collagen expression to a profibrotic profile in Mas-deficient mice. These results indicate that Ang-(1-7)-Mas axis plays a key role in the maintenance of the structure and function of the heart.


PLOS Neglected Tropical Diseases | 2008

Schistosoma mansoni Tegument Protein Sm29 Is Able to Induce a Th1-Type of Immune Response and Protection against Parasite Infection

Fernanda C. Cardoso; Gilson Costa Macedo; Elisandra Gava; Gregory T. Kitten; Vitor Luís Tenório Mati; Alan Lane de Melo; Marcelo Vidigal Caliari; Giulliana T. Almeida; Thiago M. Venancio; Sergio Verjovski-Almeida; Sergio C. Oliveira

Background Schistosomiasis continues to be a significant public health problem. This disease affects 200 million people worldwide and almost 800 million people are at risk of acquiring the infection. Although vaccine development against this disease has experienced more failures than successes, encouraging results have recently been obtained using membrane-spanning protein antigens from the tegument of Schistosoma mansoni. Our group recently identified Sm29, another antigen that is present at the adult worm tegument surface. In this study, we investigated murine cellular immune responses to recombinant (r) Sm29 and tested this protein as a vaccine candidate. Methods and Findings We first show that Sm29 is located on the surface of adult worms and lung-stage schistosomula through confocal microscopy. Next, immunization of mice with rSm29 engendered 51%, 60% and 50% reduction in adult worm burdens, in intestinal eggs and in liver granuloma counts, respectively (p<0.05). Protective immunity in mice was associated with high titers of specific anti-Sm29 IgG1 and IgG2a and elevated production of IFN-γ, TNF-α and IL-12, a typical Th1 response. Gene expression analysis of worms recovered from rSm29 vaccinated mice relative to worms from control mice revealed a significant (q<0.01) down-regulation of 495 genes and up-regulation of only 22 genes. Among down-regulated genes, many of them encode surface antigens and proteins associated with immune signals, suggesting that under immune attack schistosomes reduce the expression of critical surface proteins. Conclusion This study demonstrates that Sm29 surface protein is a new vaccine candidate against schistosomiasis and suggests that Sm29 vaccination associated with other protective critical surface antigens is the next logical strategy for improving protection.


Kidney International | 2009

Genetic deletion of the angiotensin-(1–7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria

Sérgio V.B. Pinheiro; Anderson J. Ferreira; Gregory T. Kitten; Kátia D. Silveira; Deivid Augusto da Silva; Sérgio Henrique Sousa Santos; Elisandra Gava; Carlos H. Castro; Júnio A. Magalhães; Renata K. da Mota; Giancarla A. Botelho-Santos; Michael Bader; Natalia Alenina; Robson A.S. Santos; Ana Cristina Simões e Silva

Angiotensin-(1-7), an active fragment of both angiotensins I and II, generally opposes the vascular and proliferative actions of angiotensin II. Here we evaluated effects of the angiotensin-(1-7) receptor Mas on renal physiology and morphology using Mas-knockout mice. Compared to the wild-type animals, Mas knockout mice had significant reductions in urine volume and fractional sodium excretion without any significant change in free-water clearance. A significantly higher inulin clearance and microalbuminuria concomitant with a reduced renal blood flow suggest that glomerular hyperfiltration occurs in the knockout mice. Histological analysis found reduced glomerular tuft diameter and increased expression of collagen IV and fibronectin in the both the mesangium and interstitium, along with increased collagen III in the interstitium. These fibrogenic changes and the renal dysfunction of the knockout mice were associated with an upregulation of angiotensin II AT1 receptor and transforming growth factor-beta mRNA. Our study suggests that Mas acts as a critical regulator of renal fibrogenesis by controlling effects transduced through angiotensin II AT1 receptors in the kidney.


Brazilian Dental Journal | 2011

Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration

Carlos Estrela; Ana Helena Gonçalves de Alencar; Gregory T. Kitten; Eneida Franco Vencio; Elisandra Gava

In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that range from Alzheimers disease to cardiac ischemia and regenerative medicine, like bone or tooth loss. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have been speculated. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental tissues are considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that these stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. In dentistry, stem cell biology and tissue engineering are of great interest since may provide an innovative for generation of clinical material and/or tissue regeneration. Mesenchymal stem cells were demonstrated in dental tissues, including dental pulp, periodontal ligament, dental papilla, and dental follicle. These stem cells can be isolated and grown under defined tissue culture conditions, and are potential cells for use in tissue engineering, including, dental tissue, nerves and bone regeneration. More recently, another source of stem cell has been successfully generated from human somatic cells into a pluripotent stage, the induced pluripotent stem cells (iPS cells), allowing creation of patient- and disease-specific stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental stem cell an attractive source of mesenchymal stem cells for tissue regeneration. This review describes new findings in the field of dental stem cell research and on their potential use in the tissue regeneration.


Nephrology Dialysis Transplantation | 2009

Angiotensin-(1–7) activates a tyrosine phosphatase and inhibits glucose-induced signalling in proximal tubular cells

Elisandra Gava; Arman Samad-Zadeh; Joseph Zimpelmann; Gregory T. Kitten; Robson A.S. Santos; Rhian M. Touyz; Kevin D. Burns

Background. In the diabetic kidney, stimulation of mitogen-activated protein kinases (MAPKs) leads to extracellular matrix protein synthesis. In the proximal tubule, angiotensin-(1–7) [Ang-(1–7)] blocks activation of MAPKs by angiotensin II. We studied the effect of Ang-(1–7) on signalling responses in LLC-PK1 cells in normal (5 mM) or high (25 mM) glucose. Methods. The p38 MAPK was assayed by immunoblot, Src homology 2-containing protein-tyrosine phosphatase-1 (SHP-1) activity was measured after immunoprecipitation, cell protein synthesis was determined by [3H]-leucine incorporation and transforming growth factor-β1 (TGF-β1), fibronectin and collagen IV were assayed by immunoblots and/or ELISA. Results. High glucose stimulated p38 MAPK. This response was inhibited by Ang-(1–7) in a concentration-dependent fashion, an effect reversed by the receptor Mas antagonist A-779. Ang-(1–7) increased SHP-1 activity, via the receptor Mas. An inhibitor of tyrosine phosphatase, phenylarsine oxide, reversed the inhibitory effect of Ang-(1–7) on high glucose-stimulated p38 MAPK. Ang-(1–7) inhibited high glucose-stimulated protein synthesis, and blocked the stimulatory effect of glucose on TGF-β1. Conversely, Ang-(1–7) had no effect on glucose-stimulated synthesis of fibronectin or collagen IV. Conclusions. These data indicate that in proximal tubular cells, binding of Ang-(1–7) to the receptor Mas stimulates SHP-1, associated with the inhibition of glucose-stimulated p38 MAPK. Ang-(1–7) selectively inhibits glucose-stimulated protein synthesis and TGF-β1. In diabetic nephropathy, Ang-(1–7) may partly counteract the profibrotic effects of high glucose.


Developmental Dynamics | 2006

TGFβ‐mediated RhoA expression is necessary for epithelial‐mesenchymal transition in the embryonic chick heart

Andre L.P. Tavares; Melania E. Mercado-Pimentel; Raymond B. Runyan; Gregory T. Kitten

Endothelia in the atrioventricular canal (AVC) of the embryonic heart undergo an epithelial‐mesenchymal transition (EMT) and migrate into the underlying extracellular matrix. We explore here whether RhoA mediates this EMT. RhoA was detected in all cells of the chick heart during the stages studied. Expression was elevated when EMT was actively occurring. Explants treated with C3 exoenzyme in collagen gel cultures showed a significant decrease in mesenchymal cell numbers. siRNA was used to inhibit RhoA mRNA, and both activated endothelial and mesenchymal cells decreased significantly with treatment. Loss of RhoA produced a reduction of RhoB, cyclin‐b2, and β‐catenin messages showing that these genes are regulated downstream of RhoA. In contrast, runx‐2 was not reduced. Inhibition of TGFβ3 or TGFβ2 activity caused a large reduction of RhoA message. These data place RhoA in TGFβ regulated pathways for both endothelial activation and mesenchymal invasion and demonstrate a functional requirement during EMT. Developmental Dynamics 235:1589–1598, 2006.


Developmental Dynamics | 1998

Expression of type VI collagen in the developing mouse heart

Scott E. Klewer; Sonja L. Krob; Sandra J. Kolker; Gregory T. Kitten

During development, the embryonic atrioventricular (AV) endocardial cushions undergo a morphogenic process to form mature valve leaflets and the membranous septa in the heart. Several extracellular matrix (ECM) proteins are expressed in the developing AV endocardial cushions, but it remains to be established if any specific ECM proteins are necessary for normal cushion morphogenesis. Abnormal development of the cardiac AV valves is a frequent cause of congenital heart defects, particularly in infants with trisomy 21 (Down syndrome). The genes encoding the α1 and α2 chains of type VI collagen are located on human chromosome 21 within the region thought to be critical for congenital heart defects in trisomy 21 infants. This suggests that the type VI collagen α1(VI) and α2(VI) chains may be important in normal AV valve morphogenesis. As a first step in understanding the role of type VI collagen in valve development, the authors examined the normal spatial and temporal expression patterns of mRNA and protein for type VI collagen in the embryonic mouse heart. Ribonuclease protection assay analysis demonstrates cardiac expression of the type VI collagen for α1(VI), α2(VI), and α3(VI) transcripts beginning at embryonic days 11–11.5 of mouse development. In situ hybridization studies demonstrate a coordinated pattern of cardiac expression within the AV valves for each type VI collagen chain from embryonic day 11.5 through the neonatal period. Immunohistochemical studies confirm a concentrated type VI collagen localization pattern in the endocardial cushions from the earliest stages of valve development through the neonatal period. These data indicate that type VI collagen is expressed in the developing AV canal in a pattern consistent with cushion tissue mesenchymal cell migration and proliferation, and suggest that type VI collagen plays a role in the morphogenesis of the developing cardiac AV endocardial cushions into the valve leaflets and membranous septa of the heart. Dev. Dyn. 1998;211:248–255.


International Wound Journal | 2009

Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens†

Gisele V. Oliveira; Hal K. Hawkins; David L. Chinkes; Ann S. Burke; Andre Luiz Pasqua Tavares; Marcia Ramos-e-Silva; Thomas Albrecht; Gregory T. Kitten; David N. Herndon

Oliveira GV, Hawkins HK, Chinkes D, Burke A, Pasqua Tavares AL, Ramos‐e‐Silva M, Albrecht TB, Kitten GT, Herndon DN. Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens.


Therapeutic Advances in Cardiovascular Disease | 2010

Attenuation of isoproterenol-induced cardiac fibrosis in transgenic rats harboring an angiotensin-(1-7)-producing fusion protein in the heart

Anderson J. Ferreira; Carlos H. Castro; Silvia Guatimosim; Pedro W.M. Almeida; Enéas R.M. Gomes; Marco Fabrício Dias-Peixoto; Márcia N.M. Alves; Cristiane R. Fagundes-Moura; Brit Rentzsch; Elisandra Gava; Alvair P. Almeida; Alexandre M. Guimarães; Gregory T. Kitten; Timothy L. Reudelhuber; Michael Bader; Robson A.S. Santos

Objective: It has been shown that Ang-(1-7) has cardioprotective actions. To directly investigate the effects of Ang-(1-7) specifically in the heart, we generated and characterized transgenic (TG) rats which express an Ang-(1-7)-producing fusion protein driven by the α-MHC promoter. Methods and Results: After microinjection of the transgene into fertilized rat zygotes, we obtained four different transgenic lines. Homozygous animals were analyzed with regard to the expression profile of the transgene by ribonuclease protection assay. Transgene expression was detected mainly in the heart with weak or no expression in other organs. Heterozygous TG(hA-1-7)L7301 rats presented a significant increase in cardiac Ang-(1-7) concentration compared with control rats (17.1±2.1 versus 3.9±1.4 pg/mg protein in SD rats). Radiotelemetry analysis revealed that TG rats presented no significant changes in blood pressure and heart rate compared with normal rats. Overexpression of Ang-(1-7) in the heart produced slight improvement in resting cardiac function (+ dT/dt: 81530±1305.0 versus 77470±345.5 g/s bpm in SD rats, p < 0.05), which was in keeping with the enhanced [Ca2+] handling observed in cardiomyocytes of TG rats. TG(hA-1-7)L7301 rats also showed a greater capacity to withstand stress since TG rats showed a less pronounced deposition of collagen type III and fibronectin induced by isoproterenol treatment in the subendocardial area than in corresponding controls. In addition, hearts from TG rats showed reduced incidence and duration of reperfusion arrhythmias in comparison with SD rats. Conclusion: These results indicate that Ang-(1-7) has blood pressure-independent, antifibrotic effects, acting directly in the heart.


Regulatory Peptides | 2012

Angiotensin-(1-7) receptor Mas is an essential modulator of extracellular matrix protein expression in the heart

Elisandra Gava; Carlos H. Castro; Anderson J. Ferreira; Heloísa Colleta; Marcos Barrouin Melo; Natalia Alenina; Michael Bader; Laser Antônio Machado Oliveira; Robson A.S. Santos; Gregory T. Kitten

In this study we investigated the effects of genetic deletion of the Angiotensin-(1-7) receptor Mas or the Angiotensin II receptor AT(2) on the expression of specific extracellular matrix (ECM) proteins in atria, right ventricles and atrioventricular (AV) valves of neonatal and adult mice. Quantification of collagen types I, III and VI and fibronectin was performed using immunofluorescence-labeling and confocal microscopy. Picrosirius red staining was used for the histological assessment of the overall collagen distribution pattern. ECM proteins, metalloproteinases (MMP), ERK1/2 and p38 levels were quantified by western blot analysis. Gelatin zymography was used to evaluate the activity of MMP-2 and MMP-9. We observed that the relative levels of collagen types I and III and fibronectin are significantly higher in both the right ventricle and AV valves of neonatal Mas(-/-) mouse hearts (e.g., collagen type I: 85.28±6.66 vs 43.50±4.41 arbitrary units in the right ventricles of Mas(+/+) mice). Conversely, the level of collagen type VI was lower in the right ventricle and AV valves of Mas(-/-) mice. Adult Mas(-/-) mouse hearts presented similar patterns as observed in neonates. No significant differences in ECM protein level were detected in atria. Likewise, no changes in ECM levels were observed in AT(2) knockout mouse hearts. Although deletion of Mas induced a significant reduction in the level of the active form of MMP-2 in neonate hearts and a reduction of both MMP-2 and MMP-9 in adult Mas(-/-) mice, no significant differences were observed in MMP enzymatic activities when compared to controls. The levels of the active, phosphorylated forms of ERK1/2 and p38 were higher in hearts of both neonatal and adult Mas(-/-) mice. These observations suggest that Mas is involved in the selective expression of specific ECM proteins within both the ventricular myocardium and AV valves. The changes in the ECM profile may alter the connective tissue framework and contribute to the decreased cardiac performance observed in Mas(-/-) mice.

Collaboration


Dive into the Gregory T. Kitten's collaboration.

Top Co-Authors

Avatar

Elisandra Gava

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Anderson J. Ferreira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Robson A.S. Santos

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Carlos H. Castro

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Sergio C. Oliveira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Michael Bader

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Alvair P. Almeida

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Luiz O. Ladeira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Marcelo Vidigal Caliari

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Sérgio V.B. Pinheiro

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge