Sergio C. Oliveira
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergio C. Oliveira.
Journal of Bacteriology | 2005
Ana Tereza R. Vasconcelos; Henrique Bunselmeyer Ferreira; Cristiano Valim Bizarro; Sandro L. Bonatto; Marcos Oliveira de Carvalho; Paulo Marcos Pinto; Darcy F. de Almeida; Luiz G. P. Almeida; Rosana Almeida; Leonardo Alves-Filho; E. Assunção; Vasco Azevedo; Maurício Reis Bogo; Marcelo M. Brigido; Marcelo Brocchi; Helio A. Burity; Anamaria A. Camargo; Sandro da Silva Camargo; Marta Sofia Peixe Carepo; Dirce M. Carraro; Júlio C. de Mattos Cascardo; Luiza Amaral de Castro; Gisele Cavalcanti; Gustavo Chemale; Rosane G. Collevatti; Cristina W. Cunha; Bruno Dallagiovanna; Bibiana Paula Dambrós; Odir A. Dellagostin; Clarissa Falcão
This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.
Microbial Cell Factories | 2007
Luciana Santos Cardoso; Maria Ilma Araujo; Alfredo M. Goes; Lucila G.G. Pacífico; Ricardo Riccio Oliveira; Sergio C. Oliveira
BackgroundRecombinant proteins expressed in Escherichia coli vectors are generally contaminated with endotoxin. In this study, we evaluated the ability of Polymyxin B to neutralize the effect of LPS present as contaminant on Schistosoma mansoni recombinant proteins produced in E. coli in inducing TNF-α and IL-10. Peripheral blood mononuclear cells from individuals chronically infected with S. mansoni were stimulated in vitro with recombinant Sm22.6, Sm14 and P24 antigens (10 μg/mL) in the presence of Polymyxin B (10 μg/mL).ResultsThe levels of cytokines were measured using ELISA. There was greater than 90 % reduction (p < 0.05) in the levels of TNF-α and IL-10 when Polymyxin B was added to the cultures stimulated with LPS. In cultures stimulated with S. mansoni recombinant proteins in the presence of Polymyxin B, a reduction in the levels of TNF-α and IL-10 was also observed. However, the percentage of reduction was lower when compared to the cultures stimulated with LPS, probably because these proteins are able to induce the production of these cytokines by themselves.ConclusionThis study showed that Polymyxin B was able to neutralize the effect of endotoxin, as contaminant in S. mansoni recombinant antigens produced in E. coli, in inducing TNF-α and IL-10 production.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Ana Tereza Ribeiro de Vasconcelos; Darcy F. De Almeida; Mariangela Hungria; Claudia Teixeira Guimarães; Regina Vasconcellos Antônio; Francisca Cunha Almeida; Luiz G.P. De Almeida; Rosana Almeida; José Antonio Alves-Gomes; Elizabeth M. Mazoni Andrade; Júlia Rolão Araripe; Magnólia Fernandes Florêncio de Araújo; Spartaco Astolfi-Filho; Vasco Azevedo; Alessandra Jorge Baptistà; Luiz Artur Mendes Bataus; Jacqueline da Silva Batista; André Beló; Cássio van den Berg; Maurício Reis Bogo; Sandro L. Bonatto; Juliano Bordignon; Marcelo M. Macedo Brigidom; Cristiana A. Alves Brito; Marcelo Brocchi; Hélio Almeida Burity; Anamaria A. Camargo; Divina das Dôres de Paula Cardoso; N. P. Carneiro; Dirce Maria Carraro
Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) widespread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications.
Microbial Cell Factories | 2005
Yves Le Loir; Vasco Azevedo; Sergio C. Oliveira; Daniela A. Freitas; Anderson Miyoshi; Luis G. Bermúdez-Humarán; Sébastien Nouaille; Luciana A. Ribeiro; Sophie Y. Leclercq; Jane E. Gabriel; Valeria Guimarães; Maricê N. Oliveira; Cathy Charlier; Michel Gautier; Philippe Langella
Lactococcus lactis, the model lactic acid bacterium (LAB), is a food grade and well-characterized Gram positive bacterium. It is a good candidate for heterologous protein delivery in foodstuff or in the digestive tract. L. lactis can also be used as a protein producer in fermentor. Many heterologous proteins have already been produced in L. lactis but only few reports allow comparing production yields for a given protein either produced intracellularly or secreted in the medium. Here, we review several works evaluating the influence of the localization on the production yields of several heterologous proteins produced in L. lactis. The questions of size limits, conformation, and proteolysis are addressed and discussed with regard to protein yields. These data show that i) secretion is preferable to cytoplasmic production; ii) secretion enhancement (by signal peptide and propeptide optimization) results in increased production yield; iii) protein conformation rather than protein size can impair secretion and thus alter production yields; and iv) fusion of a stable protein can stabilize labile proteins. The role of intracellular proteolysis on heterologous cytoplasmic proteins and precursors is discussed. The new challenges now are the development of food grade systems and the identification and optimization of host factors affecting heterologous protein production not only in L. lactis, but also in other LAB species.
PLOS Neglected Tropical Diseases | 2008
Fernanda C. Cardoso; Gilson Costa Macedo; Elisandra Gava; Gregory T. Kitten; Vitor Luís Tenório Mati; Alan Lane de Melo; Marcelo Vidigal Caliari; Giulliana T. Almeida; Thiago M. Venancio; Sergio Verjovski-Almeida; Sergio C. Oliveira
Background Schistosomiasis continues to be a significant public health problem. This disease affects 200 million people worldwide and almost 800 million people are at risk of acquiring the infection. Although vaccine development against this disease has experienced more failures than successes, encouraging results have recently been obtained using membrane-spanning protein antigens from the tegument of Schistosoma mansoni. Our group recently identified Sm29, another antigen that is present at the adult worm tegument surface. In this study, we investigated murine cellular immune responses to recombinant (r) Sm29 and tested this protein as a vaccine candidate. Methods and Findings We first show that Sm29 is located on the surface of adult worms and lung-stage schistosomula through confocal microscopy. Next, immunization of mice with rSm29 engendered 51%, 60% and 50% reduction in adult worm burdens, in intestinal eggs and in liver granuloma counts, respectively (p<0.05). Protective immunity in mice was associated with high titers of specific anti-Sm29 IgG1 and IgG2a and elevated production of IFN-γ, TNF-α and IL-12, a typical Th1 response. Gene expression analysis of worms recovered from rSm29 vaccinated mice relative to worms from control mice revealed a significant (q<0.01) down-regulation of 495 genes and up-regulation of only 22 genes. Among down-regulated genes, many of them encode surface antigens and proteins associated with immune signals, suggesting that under immune attack schistosomes reduce the expression of critical surface proteins. Conclusion This study demonstrates that Sm29 surface protein is a new vaccine candidate against schistosomiasis and suggests that Sm29 vaccination associated with other protective critical surface antigens is the next logical strategy for improving protection.
Infection and Immunity | 2003
Luis G. Bermúdez-Humarán; Philippe Langella; Alexandra Gruss; Reyes Tamez-Guerra; Sergio C. Oliveira; Odila Saucedo Cardenas; Roberto Montes de Oca-Luna; Yves Le Loir
ABSTRACT Interleukin-12 (IL-12), a heterodimeric cytokine, plays an important role in cellular immunity to several bacterial, viral, and parasitic infections and has adjuvant activity when it is codelivered with DNA vaccines. IL-12 has also been used with success in cancer immunotherapy treatments. However, systemic IL-12 therapy has been limited by high levels of toxicity. We describe here inducible expression and secretion of IL-12 in the food-grade lactic acid bacterium Lactococcus lactis. IL-12 was expressed as two separate polypeptides (p35-p40) or as a single recombinant polypeptide (scIL-12). The biological activity of IL-12 produced by the recombinant L. lactis strain was confirmed in vitro by its ability to induce gamma interferon (IFN-γ) production by mouse splenocytes. Local administration of IL-12-producing strains at the intranasal mucosal surface resulted in IFN-γ production in mice. The activity was greater with the single polypeptide scIL-12. An antigen-specific cellular response (i.e., secretion of Th1 cytokines, IL-2, and IFN-γ) elicited by a recombinant L. lactis strain displaying a cell wall-anchored human papillomavirus type 16 E7 antigen was dramatically increased by coadministration with an L. lactis strain secreting IL-12 protein. Our data show that IL-12 is produced and secreted in an active form by L. lactis and that the strategy which we describe can be used to enhance an antigen-specific immune response and to stimulate local mucosal immunity.
Applied and Environmental Microbiology | 2002
Luciana A. Ribeiro; Vasco Azevedo; Yves Le Loir; Sergio C. Oliveira; Yakhya Dieye; Jean-Christophe Piard; Alexandra Gruss; Philippe Langella
ABSTRACT Brucella abortus is a facultative intracellular gram-negative bacterial pathogen that infects humans and animals by entry mainly through the digestive tract. B. abortus causes abortion in pregnant cattle and undulant fever in humans. The immunogenic B. abortus ribosomal protein L7/L12 is a promising candidate antigen for the development of oral live vaccines against brucellosis, using food-grade lactic acid bacteria (LAB) as a carrier. The L7/L12 gene was expressed in Lactococcus lactis, the model LAB, under the nisin-inducible promoter. Using different signals, L7/L12 was produced in cytoplasmic, cell-wall-anchored, and secreted forms. Cytoplasmic production of L7/L12 gave a low yield, estimated at 0.5 mg/liter. Interestingly, a secretable form of this normally cytoplasmic protein via fusion with a signal peptide resulted in increased yield of L7/L12 to 3 mg/liter; secretion efficiency (SE) was 35%. A fusion between the mature moiety of the staphylococcal nuclease (Nuc) and L7/L12 further increased yield to 8 mg/liter. Fusion with a synthetic propeptide (LEISSTCDA) previously described as an enhancer for heterologous protein secretion in L. lactis (Y. Le Loir, A. Gruss, S. D. Ehrlich, and P. Langella, J. Bacteriol. 180:1895-1903, 1998) raised the yield to 8 mg/liter and SE to 50%. A surface-anchored L7/L12 form in L. lactis was obtained by fusing the cell wall anchor of Streptococcus pyogenes M6 protein to the C-terminal end of L7/L12. The fusions described allow the production and targeting of L7/L12 in three different locations in L. lactis. This is the first example of a B. abortus antigen produced in a food-grade bacterium and opens new perspectives for alternative vaccine strategies against brucellosis.
Journal of Immunology | 2008
Gilson Costa Macedo; Diogo Matos Magnani; Natália B. Carvalho; Oscar Bruna-Romero; Ricardo T. Gazzinelli; Sergio C. Oliveira
Brucella abortus is a facultative intracellular bacterium that infects humans and domestic animals. The enhanced susceptibility to virulent B. abortus observed in MyD88 knockout (KO) mice led us to investigate the mechanisms involved in MyD88-dependent immune responses. First, we defined the role of MyD88 in dendritic cell (DC) maturation. In vitro as well as in vivo, B. abortus-exposed MyD88 KO DCs displayed a significant impairment on maturation as observed by expression of CD40, CD86, and MHC class II on CD11c+ cells. In addition, IL-12 and TNF-α production was totally abrogated in MyD88 KO DCs and macrophages. Furthermore, B. abortus-induced IL-12 production was found to be dependent on TLR2 in DC, but independent on TLR2 and TLR4 in macrophages. Additionally, we investigated the role of exogenous IL-12 and TNF-α administration on MyD88 KO control of B. abortus infection. Importantly, IL-12, but not TNF-α, was able to partially rescue host susceptibility in MyD88 KO-infected animals. Furthermore, we demonstrated the role played by TLR9 during virulent B. abortus infection. TLR9 KO-infected mice showed 1 log Brucella CFU higher than wild-type mice. Macrophages and DC from TLR9 KO mice showed reduced IL-12 and unaltered TNF-α production when these cells were stimulated with Brucella. Together, these results suggest that susceptibility of MyD88 KO mice to B. abortus is due to impaired DC maturation and lack of IL-12 synthesis. Additionally, DC activation during Brucella infection plays an important regulatory role by stimulating and programming T cells to produce IFN-γ.
Infection and Immunity | 2004
Marco A. Campos; Grácia Maria Soares Rosinha; Igor C. Almeida; Xirlene S. Salgueiro; Bruce W. Jarvis; Gary A. Splitter; Nilofer Qureshi; Oscar Bruña-Romero; Ricardo T. Gazzinelli; Sergio C. Oliveira
ABSTRACT Initial host defense to bacterial infection is executed by innate immunity, and therefore the main goal of this study was to examine the contribution of Toll-like receptors (TLRs) during Brucella abortus infection. CHO reporter cell lines transfected with CD14 and TLRs showed that B. abortus triggers both TLR2 and TLR4. In contrast, lipopolysaccharide (LPS) and lipid A derived from Brucella rough (R) and smooth (S) strains activate CHO cells only through TLR4. Consistently, macrophages from C3H/HePas mice exposed to R and S strains and their LPS produced higher levels of tumor necrosis factor alpha (TNF-α) and interleukin-12 compared to C3H/HeJ, a TLR4 mutant mouse. The essential role of TLR4 for induction of proinflammatory cytokines was confirmed with diphosphoryl lipid A from Rhodobacter sphaeroides. Furthermore, to determine the contribution of TLR2 and TLR4 in bacterial clearance, numbers of Brucella were monitored in the spleen of C3H/HeJ, C3H/HePas, TLR2 knockout, and wild-type mice at 1, 3, and 6 weeks following B. abortus infection. Interestingly, murine brucellosis was markedly exacerbated at weeks 3 and 6 after infection in animals that lacked functional TLR4 (C3H/HeJ) compared to C3H/HePas that paralleled the reduced gamma interferon production by this mouse strain. Finally, by mass spectrometry analysis we found dramatic differences on the lipid A profiles of R and S strains. In fact, S lipid A was shown to be more active to trigger TLR4 than R lipid A in CHO cells and more effective in inducing dendritic cell maturation. In conclusion, these results indicate that TLR4 plays a role in resistance to B. abortus infection and that S lipid A has potent adjuvant activity.
Infection and Immunity | 2009
Lucila G.G. Pacífico; Fábio V. Marinho; Cristina Toscano Fonseca; Michele M. Barsante; Vanessa Pinho; Policarpo A. Sales-Junior; Luciana Santos Cardoso; Maria Ilma Araujo; Edgar M. Carvalho; Geovanni Dantas Cassali; Mauro M. Teixeira; Sergio C. Oliveira
ABSTRACT In areas where schistosomiasis is endemic, a negative correlation is observed between atopy and helminth infection, associated with a low prevalence of asthma. We investigated whether Schistosoma mansoni infection or injection of parasite eggs can modulate airway allergic inflammation in mice, examining the mechanisms of such regulation. We infected BALB/c mice with 30 S. mansoni cercariae or intraperitoneally injected 2,500 schistosome eggs, and experimental asthma was induced by ovalbumin (OVA). The number of eosinophils in bronchoalveolar lavage fluid was higher in the asthmatic group than in asthmatic mice infected with S. mansoni or treated with parasite eggs. Reduced Th2 cytokine production, characterized by lower levels of interleukin-4 (IL-4), IL-5, and immunoglobulin E, was observed in both S. mansoni-treated groups compared to the asthmatic group. There was a reduction in the number of inflammatory cells in lungs of S. mansoni-infected and egg-treated mice, demonstrating that both S. mansoni infection and the egg treatment modulated the lung inflammatory response to OVA. Only allergic animals that were treated with parasite eggs had increased numbers of CD4+ CD25+ Foxp3+ T cells and increased levels of IL-10 and decreased production of CCL2, CCL3, and CCL5 in the lungs compared to the asthmatic group. Neutralization of IL-10 receptor or depletion of CD25+ T cells in vivo confirmed the critical role of CD4+ CD25+ Foxp3+ regulatory T cells in experimental asthma modulation independent of IL-10.