Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greta E. Weiss is active.

Publication


Featured researches published by Greta E. Weiss.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray

Peter D. Crompton; Matthew A. Kayala; Boubacar Traore; Kassoum Kayentao; Aissata Ongoiba; Greta E. Weiss; Douglas M. Molina; Chad Burk; Michael Waisberg; Algis Jasinskas; Xiaolin Tan; Safiatou Doumbo; Didier Doumtabe; Younoussou Kone; David L. Narum; Xiaowu Liang; Ogobara K. Doumbo; Louis H. Miller; Denise L. Doolan; Pierre Baldi; Philip L. Felgner; Susan K. Pierce

Abs are central to malaria immunity, which is only acquired after years of exposure to Plasmodium falciparum (Pf). Despite the enormous worldwide burden of malaria, the targets of protective Abs and the basis of their inefficient acquisition are unknown. Addressing these knowledge gaps could accelerate malaria vaccine development. To this end, we developed a protein microarray containing ∼23% of the Pf 5,400-protein proteome and used this array to probe plasma from 220 individuals between the ages of 2–10 years and 18–25 years in Mali before and after the 6-month malaria season. Episodes of malaria were detected by passive surveillance over the 8-month study period. Ab reactivity to Pf proteins rose dramatically in children during the malaria season; however, most of this response appeared to be short-lived based on cross-sectional analysis before the malaria season, which revealed only modest incremental increases in Ab reactivity with age. Ab reactivities to 49 Pf proteins measured before the malaria season were significantly higher in 8–10-year-old children who were infected with Pf during the malaria season but did not experience malaria (n = 12) vs. those who experienced malaria (n = 29). This analysis also provided insight into patterns of Ab reactivity against Pf proteins based on the life cycle stage at which proteins are expressed, subcellular location, and other proteomic features. This approach, if validated in larger studies and in other epidemiological settings, could prove to be a useful strategy for better understanding fundamental properties of the human immune response to Pf and for identifying previously undescribed vaccine targets.


Journal of Immunology | 2009

Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area.

Greta E. Weiss; Peter D. Crompton; Shanping Li; Laura A. Walsh; Susan Moir; Boubacar Traore; Kassoum Kayentao; Aissata Ongoiba; Ogobara K. Doumbo; Susan K. Pierce

Epidemiological observations in malaria endemic areas have long suggested a deficiency in the generation and maintenance of B cell memory to Plasmodium falciparum (Pf) in individuals chronically reinfected with the parasite. Recently, a functionally and phenotypically distinct population of FCRL4+ hyporesponsive memory B cells (MBCs) was reported to be expanded in HIV-infected individuals with high viral loads. In this study, we provide evidence that a phenotypically similar atypical MBC population is significantly expanded in Pf-exposed Malian adults and children as young as 2 years of age as compared with healthy U.S. adult controls. The number of these atypical MBCs was higher in children with chronic asymptomatic Pf infections compared with uninfected children, suggesting that the chronic presence of the parasite may drive expansion of these distinct MBCs. This is the first description of an atypical MBC phenotype associated with malaria. Understanding the origin and function of these MBCs could be important in informing the design of malaria vaccines.


PLOS Pathogens | 2015

Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes

Greta E. Weiss; Paul R. Gilson; Tana Taechalertpaisarn; Wai-Hong Tham; Nienke W. M. de Jong; Katherine L. Harvey; Freya J. I. Fowkes; Paul N. Barlow; Julian C. Rayner; Gavin J. Wright; Alan F. Cowman; Brendan S. Crabb

During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite’s life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1) an early heparin-blockable interaction which weakly deforms the erythrocyte, 2) EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite’s actin-myosin motor, 3) a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4) an AMA1–RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine.


Cellular Microbiology | 2014

Conditional expression of apical membrane antigen 1 in Plasmodium falciparum shows it is required for erythrocyte invasion by merozoites.

Alan Yap; Mauro Ferreira de Azevedo; Paul R. Gilson; Greta E. Weiss; Matthew T. O'Neill; Danny W. Wilson; Brendan S. Crabb; Alan F. Cowman

Malaria is caused by obligate intracellular parasites, of which Plasmodium falciparum is the most lethal species. In humans, P. falciparum merozoites (invasive forms of the parasite) employ a host of parasite proteins to rapidly invade erythrocytes. One of these is the P. falciparum apical membrane antigen 1 (PfAMA1) which forms a complex with rhoptry neck proteins at the tight junction. Here, we have placed the Pfama1 gene under conditional control using dimerizable Cre recombinase (DiCre) in P. falciparum. DiCre‐mediated excision of the loxP‐flanked Pfama1 gene results in approximately 80% decreased expression of the protein within one intraerythrocytic growth cycle. This reduces growth by 40%, due to decreased invasion efficiency characterized by a post‐invasion defect in sealing of the parasitophorous vacuole. These results show that PfAMA1 is an essential protein for merozoite invasion in P. falciparum and either directly or indirectly plays a role in resealing of the red blood cell at the posterior end of the invasion event.


Journal of Immunology | 2016

Recruitment of Factor H as a Novel Complement Evasion Strategy for Blood-Stage Plasmodium falciparum Infection

Alexander T. Kennedy; Christoph Q. Schmidt; Jennifer K. Thompson; Greta E. Weiss; Tana Taechalertpaisarn; Paul R. Gilson; Paul N. Barlow; Brendan S. Crabb; Alan F. Cowman; Wai-Hong Tham

The human complement system is the frontline defense mechanism against invading pathogens. The coexistence of humans and microbes throughout evolution has produced ingenious molecular mechanisms by which microorganisms escape complement attack. A common evasion strategy used by diverse pathogens is the hijacking of soluble human complement regulators to their surfaces to afford protection from complement activation. One such host regulator is factor H (FH), which acts as a negative regulator of complement to protect host tissues from aberrant complement activation. In this report, we show that Plasmodium falciparum merozoites, the invasive form of the malaria parasites, actively recruit FH and its alternative spliced form FH-like protein 1 when exposed to human serum. We have mapped the binding site in FH that recognizes merozoites and identified Pf92, a member of the six-cysteine family of Plasmodium surface proteins, as its direct interaction partner. When bound to merozoites, FH retains cofactor activity, a key function that allows it to downregulate the alternative pathway of complement. In P. falciparum parasites that lack Pf92, we observed changes in the pattern of C3b cleavage that are consistent with decreased regulation of complement activation. These results also show that recruitment of FH affords P. falciparum merozoites protection from complement-mediated lysis. Our study provides new insights on mechanisms of immune evasion of malaria parasites and highlights the important function of surface coat proteins in the interplay between complement regulation and successful infection of the host.


PLOS Pathogens | 2015

Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes.

Wai-Hong Tham; Nicholas T. Y. Lim; Greta E. Weiss; Sash Lopaticki; Brendan R E Ansell; Megan J Bird; Isabelle S. Lucet; Dominique Dorin-Semblat; Christian Doerig; Paul R. Gilson; Brendan S. Crabb; Alan F. Cowman

The most severe form of malaria in humans is caused by the protozoan parasite Plasmodium falciparum. The invasive form of malaria parasites is termed a merozoite and it employs an array of parasite proteins that bind to the host cell to mediate invasion. In Plasmodium falciparum, the erythrocyte binding-like (EBL) and reticulocyte binding-like (Rh) protein families are responsible for binding to specific erythrocyte receptors for invasion and mediating signalling events that initiate active entry of the malaria parasite. Here we have addressed the role of the cytoplasmic tails of these proteins in activating merozoite invasion after receptor engagement. We show that the cytoplasmic domains of these type 1 membrane proteins are phosphorylated in vitro. Depletion of PfCK2, a kinase implicated to phosphorylate these cytoplasmic tails, blocks P. falciparum invasion of red blood cells. We identify the crucial residues within the PfRh4 cytoplasmic domain that are required for successful parasite invasion. Live cell imaging of merozoites from these transgenic mutants show they attach but do not penetrate erythrocytes implying the PfRh4 cytoplasmic tail conveys signals important for the successful completion of the invasion process.


Trends in Parasitology | 2016

Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion

Greta E. Weiss; Brendan S. Crabb; Paul R. Gilson

A highly-effective, long-lasting vaccine, targeting multiple stages of the Plasmodium falciparum life cycle, is likely to be important for the elimination of this pathogen. Key antigens of this vaccine would produce host antibodies that block the ligands required for merozoite invasion of erythrocytes, thereby curtailing the expansion of parasitemia and symptomatic disease. Recent live cell imaging of invading Plasmodium falciparum merozoites with various receptor-ligand interactions inhibited has provided new information about the function, sequence, and timing of these events, providing a rationale for a vaccine containing multiple antigens that inhibit the sequential steps of invasion.


BMC Biology | 2015

Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum

Danny W. Wilson; Christopher D. Goodman; Brad E. Sleebs; Greta E. Weiss; Nienke W. M. de Jong; Fiona Angrisano; Christine Langer; Jake Baum; Brendan S. Crabb; Paul R. Gilson; Geoffrey I. McFadden; James G. Beeson

BackgroundMalaria invasion of red blood cells involves multiple parasite-specific targets that are easily accessible to inhibitory compounds, making it an attractive target for antimalarial development. However, no current antimalarial agents act against host cell invasion.ResultsHere, we demonstrate that the clinically used macrolide antibiotic azithromycin, which is known to kill human malaria asexual blood-stage parasites by blocking protein synthesis in their apicoplast, is also a rapid inhibitor of red blood cell invasion in human (Plasmodium falciparum) and rodent (P. berghei) malarias. Multiple lines of evidence demonstrate that the action of azithromycin in inhibiting parasite invasion of red blood cells is independent of its inhibition of protein synthesis in the parasite apicoplast, opening up a new strategy to develop a single drug with multiple parasite targets. We identified derivatives of azithromycin and erythromycin that are better invasion inhibitors than parent compounds, offering promise for development of this novel antimalarial strategy.ConclusionsSafe and effective macrolide antibiotics with dual modalities could be developed to combat malaria and reduce the parasite’s options for resistance.


eLife | 2017

Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate

Natalie A. Counihan; Scott A. Chisholm; Hayley E. Bullen; Anubhav Srivastava; Paul R. Sanders; Thorey K. Jonsdottir; Greta E. Weiss; Sreejoyee Ghosh; Brendan S. Crabb; Darren J. Creek; Paul R. Gilson; Tania F. de Koning-Ward

Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival. DOI: http://dx.doi.org/10.7554/eLife.23217.001


Journal of Immunological Methods | 2014

The impact of Nucleofection® on the activation state of primary human CD4 T cells

Mingce Zhang; Zhengyu Ma; Nithianandan Selliah; Greta E. Weiss; Anna Genin; Terri H. Finkel; Randy Q. Cron

Gene transfer into primary human CD4 T lymphocytes is a critical tool in studying the mechanism of T cell-dependent immune responses and human immunodeficiency virus-1 (HIV-1) infection. Nucleofection® is an electroporation technique that allows efficient gene transfer into primary human CD4 T cells that are notoriously resistant to traditional electroporation. Despite its popularity in immunological research, careful characterization of its impact on the physiology of CD4 T cells has not been documented. Herein, using freshly-isolated primary human CD4 T cells, we examine the effects of Nucleofection® on CD4 T cell morphology, intracellular calcium levels, cell surface activation markers, and transcriptional activity. We find that immediately after Nucleofection®, CD4 T cells undergo dramatic morphological changes characterized by wrinkled and dilated plasma membranes before recovering 1h later. The intracellular calcium level also increases after Nucleofection®, peaking after 1h before recovering 8h post transfection. Moreover, Nucleofection® leads to increased expression of T cell activation markers, CD154 and CD69, for more than 24h, and enhances the activation effects of phytohemagglutinin (PHA) stimulation. In addition, transcriptional activity is increased in the first 24h after Nucleofection®, even in the absence of exogenous stimuli. Therefore, Nucleofection® significantly alters the activation state of primary human CD4 T cells. The effect of transferred gene products on CD4 T cell function by Nucleofection® should be assessed after sufficient resting time post transfection or analyzed in light of the activation caveats mentioned above.

Collaboration


Dive into the Greta E. Weiss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan F. Cowman

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Wai-Hong Tham

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter D. Crompton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Susan K. Pierce

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexander T. Kennedy

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Danny W. Wilson

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jennifer K. Thompson

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge