Grigoris D. Amoutzias
University of Thessaly
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grigoris D. Amoutzias.
Nature | 2010
J. Mark Cock; Lieven Sterck; Pierre Rouzé; Delphine Scornet; Andrew E. Allen; Grigoris D. Amoutzias; Véronique Anthouard; François Artiguenave; Jean-Marc Aury; Jonathan H. Badger; Bank Beszteri; Kenny Billiau; Eric Bonnet; John H. Bothwell; Chris Bowler; Catherine Boyen; Colin Brownlee; Carl J. Carrano; Bénédicte Charrier; Ga Youn Cho; Susana M. Coelho; Jonas Collén; Erwan Corre; Corinne Da Silva; Ludovic Delage; Nicolas Delaroque; Simon M. Dittami; Sylvie Doulbeau; Marek Eliáš; Garry Farnham
Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.
Trends in Biochemical Sciences | 2008
Grigoris D. Amoutzias; David Robertson; Yves Van de Peer; Stephen G. Oliver
In many eukaryotic transcription factor gene families, proteins require a physical interaction with an identical molecule or with another molecule within the same family to form a functional dimer and bind DNA. Depending on the choice of partner and the cellular context, each dimer triggers a sequence of regulatory events that lead to a particular cellular fate, for example, proliferation or differentiation. Recent syntheses of genomic and functional data reveal that partner choice is not random; instead, dimerization specificities, which are strongly linked to the evolution of the protein family, apply. Our focus is on understanding these interaction specificities, their functional consequences and how they evolved. This knowledge is essential for understanding gene regulation and designing a new generation of drugs.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Grigoris D. Amoutzias; Ying He; Jonathan A. R. Gordon; Dimitris Mossialos; Stephen G. Oliver; Yves Van de Peer
Gene and genome duplications create novel genetic material on which evolution can work and have therefore been recognized as a major source of innovation for many eukaryotic lineages. Following duplication, the most likely fate is gene loss; however, a considerable fraction of duplicated genes survive. Not all genes have the same probability of survival, but it is not fully understood what evolutionary forces determine the pattern of gene retention. Here, we use genome sequence data as well as large-scale phosphoproteomics data from the baker’s yeast Saccharomyces cerevisiae, which underwent a whole-genome duplication ∼100 mya, and show that the number of phosphorylation sites on the proteins they encode is a major determinant of gene retention. Protein phosphorylation motifs are short amino acid sequences that are usually embedded within unstructured and rapidly evolving protein regions. Reciprocal loss of those ancestral sites and the gain of new ones are major drivers in the retention of the two surviving duplicates and in their acquisition of distinct functions. This way, small changes in the sequences of unstructured regions in proteins can contribute to the rapid rewiring and adaptation of regulatory networks.
Proceedings of the National Academy of Sciences of the United States of America | 2007
John W. Pinney; Grigoris D. Amoutzias; Magnus Rattray; David Robertson
As whole-genome protein–protein interaction datasets become available for a wide range of species, evolutionary biologists have the opportunity to address some of the unanswered questions surrounding the evolution of these complex systems. Protein interaction networks from divergent organisms may be compared to investigate how gene duplication, deletion, and rewiring processes have shaped the evolution of their contemporary structures. However, current approaches for comparing observed networks from multiple species lack the phylogenetic context necessary to reconstruct the evolutionary history of a network. Here we show how probabilistic modeling can provide a platform for the quantitative analysis of multiple protein interaction networks. We apply this technique to the reconstruction of ancestral networks for the bZIP family of transcription factors and find that excellent agreement is obtained with an alternative sequence-based method for the prediction of leucine zipper interactions. Further analysis shows our probabilistic method to be significantly more robust to the presence of noise in the observed network data than a simple parsimony-based approach. In addition, the integration of evidence over multiple species means that the same method may be used to improve the quality of noisy interaction data for extant species. The ancestral states of a protein interaction network have been reconstructed here by using an explicit probabilistic model of network evolution. We anticipate that this model will form the basis of more general methods for probing the evolutionary history of biochemical networks.
Molecular & Cellular Proteomics | 2012
Grigoris D. Amoutzias; Ying He; Kathryn S. Lilley; Yves Van de Peer; Sthephen G Oliver
We have assembled a reliable phosphoproteomic data set for budding yeast Saccharomyces cerevisiae and have investigated its properties. Twelve publicly available phosphoproteome data sets were triaged to obtain a subset of high-confidence phosphorylation sites (p-sites), free of “noisy” phosphorylations. Analysis of this combined data set suggests that the inventory of phosphoproteins in yeast is close to completion, but that these proteins may have many undiscovered p-sites. Proteins involved in budding and protein kinase activity have high numbers of p-sites and are highly over-represented in the vast majority of the yeast phosphoproteome data sets. The yeast phosphoproteome is characterized by a few proteins with many p-sites and many proteins with a few p-sites. We confirm a tendency for p-sites to cluster together and find evidence that kinases may phosphorylate off-target amino acids that are within one or two residues of their cognate target. This suggests that the precise position of the phosphorylated amino acid is not a stringent requirement for regulatory fidelity. Compared with nonphosphorylated proteins, phosphoproteins are more ancient, more abundant, have longer unstructured regions, have more genetic interactions, more protein interactions, and are under tighter post-translational regulation. It appears that phosphoproteins constitute the raw material for pathway rewiring and adaptation at various evolutionary rates.
Future Microbiology | 2008
Grigoris D. Amoutzias; Yves Van de Peer; Dimitris Mossialos
The majority of nonribosomal peptide synthases and type I polyketide synthases are multimodular megasynthases of oligopeptide and polyketide secondary metabolites, respectively. Owing to their multimodular architecture, they synthesize their metabolites in assembly line logic. The ongoing genomic revolution together with the application of computational tools has provided the opportunity to mine the various genomes for these enzymes and identify those organisms that produce many oligopeptide and polyketide metabolites. In addition, scientists have started to comprehend the molecular mechanisms of megasynthase evolution, by duplication, recombination, point mutation and module skipping. This knowledge and computational analyses have been implemented towards predicting the specificity of these megasynthases and the structure of their end products. It is an exciting field, both for gaining deeper insight into their basic molecular mechanisms and exploiting them biotechnologically.
GigaScience | 2017
Panayotis Vlastaridis; Pelagia Kyriakidou; Anargyros Chaliotis; Yves Van de Peer; Stephen G. Oliver; Grigoris D. Amoutzias
Abstract Background Phosphorylation is the most frequent post-translational modification made to proteins and may regulate protein activity as either a molecular digital switch or a rheostat. Despite the cornucopia of high-throughput (HTP) phosphoproteomic data in the last decade, it remains unclear how many proteins are phosphorylated and how many phosphorylation sites (p-sites) can exist in total within a eukaryotic proteome. We present the first reliable estimates of the total number of phosphoproteins and p-sites for four eukaryotes (human, mouse, Arabidopsis, and yeast). Results In all, 187 HTP phosphoproteomic datasets were filtered, compiled, and studied along with two low-throughput (LTP) compendia. Estimates of the number of phosphoproteins and p-sites were inferred by two methods: Capture-Recapture, and fitting the saturation curve of cumulative redundant vs. cumulative non-redundant phosphoproteins/p-sites. Estimates were also adjusted for different levels of noise within the individual datasets and other confounding factors. We estimate that in total, 13 000, 11 000, and 3000 phosphoproteins and 230 000, 156 000, and 40 000 p-sites exist in human, mouse, and yeast, respectively, whereas estimates for Arabidopsis were not as reliable. Conclusions Most of the phosphoproteins have been discovered for human, mouse, and yeast, while the dataset for Arabidopsis is still far from complete. The datasets for p-sites are not as close to saturation as those for phosphoproteins. Integration of the LTP data suggests that current HTP phosphoproteomics appears to be capable of capturing 70 % to 95 % of total phosphoproteins, but only 40 % to 60 % of total p-sites.
Future Microbiology | 2007
Dimitris Mossialos; Grigoris D. Amoutzias
Iron is an essential nutrient for almost all bacteria; however, at neutral pH its bioavailability is limited. Siderophores are iron-binding compounds of low molecular weight that enable the microorganisms that produce them to obtain the necessary iron from the environment. Fluorescent pseudomonads include those that are plant growth promoting, human and plant pathogens, as well as bacteria involved in the biodegradation of xenobiotics. Although pyoverdine is the main siderophore produced by different fluorescent pseudomonads, other siderophores produced by fluorescent pseudomonads include pyochelin, (thio)quinolobactin and pyridine-2, 6-bis thiocarboxylic acid. Research on siderophores continues to reveal new information on their regulation, biosynthesis, function and properties. In this review, we focus on recent advances in the field, particularly on newly characterized siderophores produced by fluorescent pseudomonads and their biotechnological potential.
Marine Drugs | 2016
Grigoris D. Amoutzias; Anargyros Chaliotis; Dimitris Mossialos
Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.
Virus Genes | 2015
Zaharoula Kyriakopoulou; Vaia Pliaka; Grigoris D. Amoutzias; Panayotis Markoulatos
Human enteroviruses (EV) belong to the Picornaviridae family and are among the most common viruses infecting humans. They consist of up to 100 immunologically and genetically distinct types: polioviruses, coxsackieviruses A and B, echoviruses, and the more recently characterized 43 EV types. Frequent recombinations and mutations in enteroviruses have been recognized as the main mechanisms for the observed high rate of evolution, thus enabling them to rapidly respond and adapt to new environmental challenges. The first signs of genetic exchanges between enteroviruses came from polioviruses many years ago, and since then recombination has been recognized, along with mutations, as the main cause for reversion of vaccine strains to neurovirulence. More recently, non-polio enteroviruses became the focus of many studies, where recombination was recognized as a frequent event and was correlated with the appearance of new enterovirus lineages and types. The accumulation of multiple inter- and intra-typic recombination events could also explain the series of successive emergences and disappearances of specific enterovirus types that could in turn explain the epidemic profile of circulation of several types. This review focuses on recombination among human non-polio enteroviruses from all four species (EV-A, EV-B, EV-C, and EV-D) and discusses the recombination effects on enterovirus epidemiology and evolution.