Grzegorz Malina
AGH University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Grzegorz Malina.
Waste Management | 2013
Iwona Zawierucha; Cezary Kozlowski; Grzegorz Malina
In this study, performance of a lab-scale two-step treatment system was evaluated for removal of toxic metal ions from landfill leachate. The technology of polymer inclusion membranes (PIMs) was the first step, while the second step of the treatment system was based on sorption on impregnated resin. The PIMs were synthesized from cellulose triacetate as a support, macrocyclic compound i.e. alkyl derivative of resorcinarene as a ionic carrier and o-nitrophenyl pentyl ether as a plasticizer. The transport experiments through PIM were carried out in a permeation cell, in which the membrane film was tightly clamped between two cell compartments. The sorption tests were carried out using a column filled with a resin impregnated with resorcinarene derivative. The obtained results show the good performance with respect to the removal of heavy metals from landfill leachate with the overall removal efficiency of 99%, 88% and 55% for Pb(II), Cd(II) and Zn(II) ions, respectively. Moreover the contents of metal ions in the leachate sample after treatment system were below permissible limit for wastewater according to the Polish Standards.
Archive | 2011
Iwona Zawierucha; Grzegorz Malina
Contamination of soils with oil hydrocarbons is currently an important worldwide issue. Among all the available remediation methods, bioremediation is widely considered to be a cost-effective and environmentally friendly approach. For bioremediation to be effective, the overall rate of intrinsic biodegradation and subsequent removal of hydrocarbons must be accelerated, which can be done through biostimulation and bioaugmentation. A variety of techniques for bioaugmentation and biostimulation have been compiled and summarized in this chapter. The evaluation of the potentials to use such treatments to enhance biodegradation rates in oil hydrocarbon contaminated soil is provided, including some recent works from the author’s laboratory. Factors that may enhance biodegradation of oil hydrocarbons in soil are discussed in detail, and finally some examples of new approaches are presented.
Journal of Contaminant Hydrology | 2015
Franklin Obiri-Nyarko; Jolanta Kwiatkowska-Malina; Grzegorz Malina; Tomasz Kasela
The feasibility of using geochemical modelling to predict the performance of a zeolite-permeable reactive barrier (PRB) for treating lead (Pb(2+)) contaminated water was investigated in this study. A short-term laboratory column experiment was first performed with the zeolite (clinoptilolite) until the elution of 50 PV (1 PV=ca. 283 mL). Geochemical simulations of the one-dimensional transport of the Pb(2+), considering removal processes including: ion-exchange, adsorption and complexation; the concomitant release of exchangeable cations (Ca(2+), Mg(2+), Na(+), and K(+)) and the changes in pH were subsequently performed using the geochemical model PHREEQC. The results showed a reasonable agreement between the experimental results and the numerical simulations, with the exception of Ca(2+) for which a great discrepancy was observed. The model also indicated the formation of secondary mineral precipitates such as goethite and hematite throughout the experiment, of which the effect on the hydraulic conductivity was found to be negligible. The results were further used to extrapolate the long-term performance of the zeolite. We found the capacity would be completely exhausted at PV=250 (ca. 3 days). The study, thus, generally demonstrates the applicability of PHREEQC to predict the short and long-term performance of zeolite-PRBs. Therefore, it can be used to assist in the design and for management purposes of such barriers.
Environmental Science and Pollution Research | 2015
Ewa Kret; Aleksandra Kiecak; Grzegorz Malina; Ivonne Nijenhuis; A. Postawa
The main aim of this study was to determine the sorption and biodegradation parameters of trichloroethene (TCE) and tetrachloroethene (PCE) as input data required for their fate and transport modelling in a Quaternary sandy aquifer. Sorption was determined based on batch and column experiments, while biodegradation was investigated using the compound-specific isotope analysis (CSIA). The aquifer materials medium (soil 1) to fine (soil 2) sands and groundwater samples came from the representative profile of the contaminated site (south-east Poland). The sorption isotherms were approximately linear (TCE, soil 1, Kd = 0.0016; PCE, soil 1, Kd = 0.0051; PCE, soil 2, Kd = 0.0069) except for one case in which the best fitting was for the Langmuir isotherm (TCE, soil 2, Kf = 0.6493 and Smax = 0.0145). The results indicate low retardation coefficients (R) of TCE and PCE; however, somewhat lower values were obtained in batch compared to column experiments. In the column experiments with the presence of both contaminants, TCE influenced sorption of PCE, so that the R values for both compounds were almost two times higher. Non-significant differences in isotope compositions of TCE and PCE measured in the observation points (δ13C values within the range of −23.6 ÷ −24.3 ‰ and −26.3 ÷−27.7 ‰, respectively) indicate that biodegradation apparently is not an important process contributing to the natural attenuation of these contaminants in the studied sandy aquifer.
Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S | 2013
Aleksandra Kiecak; Ewa Kret; Monika Cichostępska; Grzegorz Malina
Abstract Natural Attenuation (NA) in the case of groundwater contaminated with organic compounds relies mainly on intrinsic biodegradation processes. The aim of reliance on natural processes is to achieve site-specific cleanup objectives within reasonable time frames and costs. Such approach may be considered as a risk reduction/remedial option for groundwater contaminated with trichloroethene (TCE) and tetrachloroethene (PCE). This case study presents implementation of the US EPA’s guideline „Technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater” to asses intrinsic biodegradation potentials in TCE and PCE contaminated groundwater in the vicinity of Nowa Deba waterworks (south-east Poland). Literature and field data collected from wells and piezometers were used to develop a conceptual model of contaminants’ fate and transport from a source to a receptor. The intrinsic biodegradation was investigated basing on available analytical parameters (eg concentrations of oxygen, nitrates, chlorides, and pH, TOC and temperature) that are considered as indicators of TCE and PCE transformation. Preliminary screening was done by giving certain points for these parameters, and interpreted in order to asses intrinsic biodegradation potentials. The results indicate inadequate evidence for intrinsic biodegradation (reductive dehalogention) of TCE and PCE, thus a limited potential for NA as a remedial/risk reduction option in the studied case, unless some measures for enhancement of TCE and PCE intrinsic biodegradation are applied. Abstrakt Samooczyszczenie (ang. natural attenuation - NA) w przypadku wód podziemnych zanieczyszczonych substancjami organicznymi, polega głównie na samoistnej biodegradacji zanieczyszczeń. Oparcie remediacji na naturalnych procesach zakłada osiągnięcie wymaganych efektów oczyszczania specyficznych dla danego terenu przy zachowaniu rozsądnych ram czasowych i kosztów. Takie podejście może być zastosowane jako jedna z opcji likwidacji zagrożenia/remediacji wody podziemnej zanieczyszczonej trichloroetenem (TCE) i tetrachloroetenem (PCE) w rejonie ujęcia Nowa Dęba (południowo-wschodnia Polska). Do oceny możliwości samoistnej biodegradacji TCE i PCE w rejonie Nowej Dęby wykorzystano procedurę opisaną w dokumencie US EPA „Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water”. Dane archiwalne oraz wyniki badań terenowych zostały wykorzystane do opracowania modelu koncepcyjnego transportu zanieczyszczeń od ogniska do receptora. Samoistną biodegradację oceniono na podstawie dostępnych parametrów analitycznych (np. stężenia tlenu, azotanów, chlorków oraz pH, TOC i temperatury wody), które uważane są jako wskaźniki rozkładu TCE i PCE. Ocena polegała na przypisaniu odpowiedniej liczby punktów i wag dla poszczególnych parametrów oraz interpretacji uzyskanych wyników w celu sprawdzenia potencjalnych możliwości samoistnej biodegradacji badanych zanieczyszczeń. Stwierdzono brak jednoznacznych dowodów na samoistną biodegradację (dehalogenację redukcyjną) TCE i PCE w wodach podziemnych w rejonie ujęcia Nowa Dęba. Wynika z tego, że w opisywanym przypadku oparcie remediacji wód podziemnych (i likwidacji zagrożenia dla ujęcia wody) na NA jest możliwe jedynie pod warunkiem zastosowania metod wspomagających biodegradację TCE i PCE.
Environmental Earth Sciences | 2017
Aleksandra Kiecak; Grzegorz Malina; Ewa Kret; Tadeusz Szklarczyk
Selection of effective groundwater remediation scenarios is a complex issue that requires understanding of contaminants’ transport processes. The effectiveness of cleanup measures may be verified by fate and transport numerical modeling. The goal of this work was to present the usefulness of fate and transport modeling for planning, verification and fulfillment of effective groundwater remediation methods. Selection methodology was developed, which is based on results of numerical flow and transport modeling. A field site located in south-east Poland was selected as a case study, in which groundwater contamination of trichloroethene and tetrachloroethene was detected. The results indicated that “pump and treat” was the most effective among the studied remediation methods, followed by permeable reactive barrier and in situ chemical oxidation. Natural attenuation-based remediation was demonstrated to be the least suitable, as it requires the longest time to reach predefined remediation goals, principally due to low sorption capacity and unfavorable hydrogeochemical conditions for biodegradation. Fate and transport numerical modeling allowed simulating different remediation strategies, and thus the decision-making process was facilitated.
Chemosphere | 2014
Franklin Obiri-Nyarko; S. Johana Grajales-Mesa; Grzegorz Malina
Environmental Science: Processes & Impacts | 2016
Iwona Zawierucha; Cezary Kozlowski; Grzegorz Malina
Environmental Earth Sciences | 2016
S. Johana Grajales-Mesa; Grzegorz Malina
Geology, Geophysics and Environment | 2015
Krzysztof Wołowiec; Grzegorz Malina